
ACCESS.busTM

Specifications Version 3.0

Previous versions of this document are obsolete and should be discarded.
This document supersedes all previous versions.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C
specifications.

Table of Contents - ACCESS.bus Specification V3.0 i

TABLE OF CONTENTS

SECTION 1 -- HARDWARE SPECIFICATION

SECTION 2 -- BASE PROTOCOL SPECIFICATION

SECTION 3 -- DEVICE DRIVER INTERFACE SPECIFICATION

SECTION 4 -- MINI PORT DRIVER INTERFACE SPECIFICATION

SECTION 5 -- KEYBOARD DEVICE PROTOCOL SPECIFICATION

SECTION 6 -- LOCATOR DEVICE PROTOCOL SPECIFICATION

SECTION 7 -- MONITOR DEVICE PROTOCOL SPECIFICATION

SECTION 8 -- SMART BATTERY SYSTEMS DEVICE PROTOCOL SPECIFICATON

SECTION 9 -- TEXT DEVICE PROTOCOL SPECIFICATION

SECTION 10 -- MECHANICAL DRAWINGS

SECTION 1

ACCESS.bus

Hardware Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in
its entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C
specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

1. Introduction... 1-1

1.1. General Description ... 1-2

1.2. General Characteristics ... 1-3

1.2.1. START and STOP Conditions ... 1-4

1.3. Data Transfer ... 1-4

1.3.1. Byte format ... 1-4

1.3.2. Acknowledge .. 1-5

1.4. Arbitration and Clock Generation .. 1-5

1.4.1. Synchronization... 1-5

1.4.2. Arbitration... 1-6

1.4.3. Use of the clock synchronizing mechanism as a handshake ... 1-7

1.5. Format of 7-Bit Addresses ... 1-7

1.6. 7-Bit Addressing ... 1-8

1.6.1. Definition of bits in the first byte... 1-9

1.7. Off-board ACCESS.bus ... 1-9

1.7.1. Cabling and Connectors... 1-9

1.7.2. Power .. 1-10

1.7.3. Maximum Number of Off-board Devices .. 1-10

1.7.4. Cable Shield.. 1-11

1.7.5. Pull-ups and Series Resistors ... 1-11

1.7.6. Main Differences Between the I2C and Off-board ACCESS.bus ... 1-12

1.8. On-board ACCESS.bus.. 1-12

1.8.1. Current Sources, Pull-ups and Series Resistors .. 1-12

1.8.2. Main Differences Between the I2C and On-board ACCESS.bus .. 1-12

1.9. Electrical Specifications and Timing For I/O Stages and Bus Lines .. 1-14

ACCESS.bus Hardware Specification V3.0 1-1

1. Introduction
ACCESS.bus is a serial communication protocol allowing a computer host to communicate with external
peripherals as well as with on-board system devices. It provides a simple, uniform and inexpensive way
to connect peripheral devices such as keyboards, mice, joysticks, modems, monitors, and printers to a
single computer port. In addition, ACCESS.bus provides a communication link between the host
computer and on-board intelligent devices such as smart-batteries, smart-chargers and power plane
controllers. With ACCESS.bus the system can communicate and control up to 125 devices through a
single microcontroller host equipped with an I2C port.

The ACCESS.bus protocol includes a physical layer based on the I2C serial bus developed by Philips,
and several software layers. The software layers include the base protocol, the device driver interface,
and several specific device protocols (keyboard, locator, text, etc.).

The base protocol defines standard messages for device communication, device initialization, device
identifications, address assignment, and a message envelope for device reports and control information.
In the following discussion the host computer is simply called the computer and all the other partners on
the bus are called devices. A bus transaction is called a message.

This document describes the various layers of the ACCESS.bus protocol starting with the physical layer
hardware specification.

Because of the difference in the electrical requirements between devices operating externally to the
system and devices operating internally within the system box, there are two independent electrical
specifications for each type of these devices.

Peripherals operating externally to the system box are referred to as Off-board devices. The objective of
the hardware specification for Off-board devices is to specify maximum capacitance and cable lengths.

Devices permanently connected on the motherboard are referred to as On-board devices. The main
objective of the hardware specification for On-board devices is to provide for low power operation and
implementation flexibility in systems operating at different voltages.

In this specification, ACCESS.bus refers to both On-board and Off-board ACCESS.bus components
unless otherwise stated.

Figure 1.1: A Typical ACCESS.bus System

Version 3.0 of the ACCESS.bus Hardware Specification introduces new definitions, enhancements and
modifications that will allow new applications and implementations to be developed using the
ACCESS.bus standard. The main objective of Version 3.0 is to provide a specification for on-board
implementations of ACCESS.bus. An on-board specification for ACCESS.bus aims to provide an
industry wide standard for establishing a low cost network of microcontrollers and ASIC devices that can

ACCESS.bus Hardware Specification V3.01-2

be used for various system control and management functions. On-board ACCESS.bus devices may use
either the original ACCESS.bus messaging protocol or the newly defined messaging protocol extensions
described in this document.. On-board ACCESS.bus devices using these new extensions will be referred
to as System Management devices or SM devices. They are optimized for internal system usage,
particularly with regard to their ability to meet low power and minimal complexity requirements. On-
Board components implementing either the original ACCESS.bus messaging protocol and/or these new
extensions are designed to operate together on a common set of wires. On-board and off-board
ACCESS.bus components have different electrical requirements and therefore should not share the same
physical network. The additions made to this specification to satisfy the requirements for the On-board
ACCESS.bus do not violate the backward compatibility principle of ABIG.

A.b
Controller

Bus Manager

Device Driver nDevice Driver 2Device Driver 1

Smart Clock

Smart Battery

Audio ControlLCD Contrast

PCMCIA Power

Power Plane

On Board

Off Board

Figure 1.1.a: A typical On-board/Off-board implementation of ACCESS.bus

Both On-board and Off-board ACCESS.bus systems can share a common host as well as the software
interface.

1.1. General Description
ACCESS.bus is based on two wires, serial data (SDA) and serial clock (SCL), which carry
information between the devices connected to the bus. Following initialization, each device is
recognized by a unique address and can operate as either a master transmitter or slave receiver.
A master is the device which initiates a data transfer on the bus and generates the clock signals
to permit that transfer. The master device always transmits data to the slave. Any device
addressed by the master is considered a slave.

The ACCESS.bus is typically a multi-master bus. Every device connected to the ACCESS.bus is
normally capable of being both a bus master and a bus slave. On-board ACCESS.bus SM
devices may act as either a master, a slave or both.

The master generates the timing and terminates the transfer. Since more than one device will be
connected to the ACCESS.bus, more than one master could try to initiate a data transfer at the
same time. To avoid the chaos that might ensue from such an event - an arbitration procedure
has been developed. This procedure relies on the wired-AND connection of all ACCESS.bus
interfaces to the ACCESS.bus.

ACCESS.bus Hardware Specification V3.0 1-3

If two or more masters have to put information onto the bus, the first to produce a 'one' when the
other produces a 'zero' will lose the arbitration. The clock signals during arbitration are a
synchronized combination of the clocks generated by the masters using the wired-AND
connection to the SCL line.

Generation of clock signals on the ACCESS.bus is always the responsibility of master devices;
each master generates its own clock signals when transferring data on the bus. Bus clock signals
from a master can only be altered when they are stretched by a slow-slave device holding-down
the clock line, or by another master when arbitration occurs.

1.2. General Characteristics

OUT

SCLK
IN

SCLK

DATAN2
OUT

DATA
IN

DEVICE 2

pull-up
resistors Rp Rp

+VDD

SDA (Serial Data Line)

SCL (Serial Clock Line)

SCLKN2

DEVICE 1

OUT

SCLK
IN

SCLK

DATAN1
OUT

DATA
IN

SCLKN1

Figure 1.2: Connecting ACCESS.bus devices to the ACCESS.bus

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a current
source or pull-up resistor. When the bus is free, both lines are HIGH. The output stages of
devices connected to the bus must have an open-drain or open collector in order to perform the
wired-AND function. Data on the ACCESS.bus can be transferred at a rate up to 100 kbit/s in
the standard-mode. The number of Off-board device interfaces connected to the bus is
dependent on the bus capacitance limit of 1000 pF, the overall bus length of 10 meters, and the
current available to power the devices.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or
LOW state of the data line can only change when the clock signal on the SCL line is LOW (see
Figure 1.3).

SDA stable
and valid

SDA
changes

SDA

SCL

Figure 1.3: Bit transfer on the ACCESS.bus

ACCESS.bus Hardware Specification V3.01-4

1.2.1. START and STOP Conditions
Within the procedure of the ACCESS.bus, unique sequences are defined as START and
STOP conditions (see Figure 1.4).

START
CONDITION

STOP
CONDITION

S P

SDA

SCL

Figure 1.4: START and STOP conditions

A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START
condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP
condition.

START and STOP conditions are always generated by the master. The bus is considered
to be busy after the START condition. The bus is considered to be free again a certain
time after the STOP condition.

1.3. Data Transfer

1.3.1. Byte format

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be
transmitted per transfer is restricted by the ACCESS.bus protocol. Each byte must be
followed by an acknowledge bit. Data is transferred with the most significant bit (MSB)
first (Figure 1.5).

MSB

acknowledge
from receiver

STOP
CONDITION

ACK ACK

START
CONDITION byte complete

S P
1 2 7 8 9 3-8

SDA

SCL

1 2 9

LSB

acknowledge
from receiver

Figure 1.5: data transfer on the ACCESS.bus

If a receiver can't receive another complete byte of data until it has performed some other
function, for example servicing an internal interrupt, it can hold the clock line SCL LOW

ACCESS.bus Hardware Specification V3.0 1-5

transfer then continues when the receiver is ready for another byte of data and releases
clock line SCL.

1.3.2. Acknowledge
The acknowledge related clock pulse is generated by the master. The master releases
the SDA line (HIGH) during the acknowledge clock pulse.

The slave must pull down the SDA line during the acknowledge clock pulse so that it
remains stable LOW during the HIGH period of this clock pulse (Figure 1.6) meeting
set-up and hold times.

When a slave-receiver doesn't acknowledge the slave address (for example, it is unable
to receive because it is performing some real-time function), the data line must be left
HIGH by the slave. The master can then generate a STOP condition to abort the
transfer. This is called 'negative acknowledge.'

If a slave-receiver does acknowledge the slave address but, some time later in the
transfer cannot receive any more data bytes, the master must again abort the transfer.
This is indicated by the slave generating the negative acknowledge on the first byte that
cannot be received. The slave leaves the data line HIGH and the master generates the
STOP condition.

START
CONDITION

clock pulse for
acknowledge

HIGH = no acknowledge

LOW = acknowledge

DATA OUTPUT
BY TRANSMITTER

DATA OUTPUT
BY RECEIVER

SCL FROM
MASTER

1 2 7 8 9

MSB LSB

Figure 1.6 Acknowledge on the ACCESS.bus

1.4. Arbitration and Clock Generation

1.4.1. Synchronization
All masters generate their own clock on the SCL line to transfer messages on the
ACCESS.bus. Data is only valid during the HIGH period of the clock. A defined clock
is therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of ACCESS.bus
interfaces to the SCL line. This means that a HIGH to LOW transfer on the SCL line
will cause the devices concerned to start counting off their minimum LOW period and,
once a device clock has gone LOW, it will hold the SCL line in that state until the clock
HIGH state is reached (Figure 1.7). However, the LOW to HIGH transition of this clock
may not change the state of the SCL line if another clock is still within its LOW period.
The SCL line will therefore be held LOW by the device with the longest LOW period.
Devices with shorter LOW periods enter a HIGH wait-state during this time.

ACCESS.bus Hardware Specification V3.01-6

ACCESS.bus defines a minimum actual bus speed for devices, to limit this type of
clock stretching.

When all devices concerned have counted off their LOW period, the clock line will be
released and go HIGH. There will then be no difference between the device clocks and
the state of the SCL line, and all the devices will start counting their minimum HIGH
periods. The first device to complete the HIGH period will again pull the SCL line
LOW.

In this way, a synchronized SCL clock is generated with its LOW period determined by
the device with the longest clock LOW period, and its HIGH period determined by the
one with the shortest clock HIGH period.

wait
state

start counting
HIGH period

counter
reset

CLK
1

CLK
2

SCL

Figure 1.7: Clock synchronization during the arbitration procedure

1.4.2. Arbitration
A master may start a transfer only if the bus is free. Two or more masters may generate
a START condition within the minimum hold time (tHD;STA) which results in a valid
START condition on the bus.

Arbitration takes place on the SDA line, while the SCL line is at the HIGH level, in
such a way that the master which transmits a HIGH level, while another master is
transmitting a LOW level will switch off its DATA output stage because the level on
the bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is a comparison of the slave
address bits . If the masters are each trying to address the same device, arbitration
continues with comparison of the sending master address. Arbitration should always be
completed during the slave and master address transmission. Because address
information on the ACCESS.bus is used for arbitration, no information is lost during
this process.

A master which loses the arbitration can generate clock pulses until the end of the byte
which it loses the arbitration.

If a master loses arbitration during the addressing stage, it's possible that the winning
master is trying to address it. The losing master must therefore switch over immediately
to its slave-receiver mode.

ACCESS.bus Hardware Specification V3.0 1-7

Figure 1.8 shows the arbitration procedure for two masters. Of course, more may be
involved (depending on how many devices are connected to the bus).

transmitter 1 loses arbitration
SDA is not DATA 1

DATA
1

SDA

DATA
2

SCL

S

Figure 1.8: Arbitration procedure of two masters

The moment there is a difference between the internal data level of the master
generating DATA 1 and the actual level on the SDA line, its data output is switched off,
which means that a HIGH output level is then connected to the bus. This will not affect
the data transfer initiated by the winning master.

1.4.3. Use of the clock synchronizing mechanism as a handshake
In addition to being used during the arbitration procedure, the clock synchronization
mechanism can be used to enable receivers to cope with fast data transfers, on either a
byte level or a bit level.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs
more time to store a received byte or prepare another byte to be transmitted. Slaves can
then hold the SCL line LOW after reception and acknowledgment of a byte to force the
master into a wait state until the slave is ready for the next byte transfer in a type of
handshake procedure.

On the bit level, a device such as a microcontroller without, or with only a limited
hardware ACCESS.bus interface on-chip can slow down the bus clock by extending
each clock LOW period. The speed of any master is thereby adapted to the internal
operating rate of this device.

1.5. Format of 7-Bit Addresses
Data transfers follow the format shown in Figure 1.9. After the START condition (S), a slave
address is sent. The address is 7 bits long followed by an eighth bit which is normally a zero.

STOP
CONDITION

ACK

START
CONDITION

S P
1-7 8 9

SDA

SCL

R/WADDRESS

1-7 8 9 1-7 8 9

ACKDATA ACKDATA

BIT 8
is LOW

BIT 9
ACK.

ACCESS.bus Hardware Specification V3.01-8

Figure 1.9: A complete data transfer

A/AR/WS A DATA A PSLAVE ADDRESS

From master to slave

From slave to master

'0' (write)
data transferred

(n bytes + acknowledge)

A = acknowledge (SDA LOW)
A = not acknowledge (SDA HIGH)
S = START condition

P = STOP condition

DATA

Figure 1.10: A master-transmitter addresses a slave receiver with a 7-bit address.

Notes:
1. Each byte is followed by an acknowledgment bit as indicated by the A or A blocks in the

sequence.
2. ACCESS.bus compatible devices must reset their bus logic on receipt of a START or

repeated START condition such that they all anticipate the sending of a slave address.

S Slave Address W A Data A Data A/A P

From master to slave

From slave to master

S- Start condition

P- Stop condition

Figure 1.11: A Master reads a Slave immediately after the first byte

S Slave Address W A Data A Data A/A P

From master to slave

From slave to master

S- Start condition

P- Stop condition

n-bytes

Sr Slave Addr R A

n-bytes

Sr- Repeated Start condition

Figure 1.12: “Combined format” with repeated start condition

1.6. 7-Bit Addressing
The addressing procedure for the ACCESS.bus is such that the first byte after the START
condition normally determines which slave device will be selected by the master.

ACCESS.bus Hardware Specification V3.0 1-9

1.6.1. Definition of bits in the first byte
The first seven bits of the first byte make up the slave address (Figure 1.11). The LSB
(least significant bit) or eighth bit is the read/write bit and is usually zero.

When an address is sent, each device in a system compares the first seven bits after the
START condition with its address. If they match, the device considers itself addressed
by the master as a slave-receiver.

.

 slave address

R/W

MSB LSB

Figure 1.13: The first byte after the START procedure

1.7. Off-board ACCESS.bus

1.7.1. Cabling and Connectors
Off-board ACCESS.bus uses a four-pin, shielded MOLEX SEMCONN or AMP SDL,
modular-type connector. The MOLEX version is not keyed, the AMP version has key
"D". This "D" key provides compatibility between AMP and MOLEX connectors.

1 BLACK - GND

2 GREEN - SDA

3 RED - +5V

4 WHITE - SCL

Figure 1.14: Shielded Modular Male Connector - Pins Side (Not to Scale)

The Off-board ACCESS.bus cable is a four conductor, low capacitance shielded cable
(refer to Section 7 of this document for dimensioned outline drawings). The four
conductors are used for ground - GND, serial data - SDA, plus five volts - +5V, and
serial clock - SCL.

4 3 2 1

1 — GND

2 — SDA

3 — +5V

4 — SCL

Figure 1.15: Female Connector, Front View (Not to Scale)

The host computer and the devices which do not have built-in captive cables, have one
or two female connectors.

ACCESS.bus Hardware Specification V3.01-10

Hand-held devices such as mice or bar code readers have one male connector at the end
of a captive cable.

Tee connections are allowed to connect multiple devices.

The Off-board ACCESS bus cable has the following wire sizes:

SDA and SCL wire size AWG #28.
GND and +5V wire size AWG #26.

The capacitance of the SCL and SDA conductors shall be less than 70 pF per meter
between one conductor and other conductors connected to shield.

1.7.2. Power
The Off-board ACCESS.bus host should supply +4.75V to 5.25V. The rise time of the
+5V supply should be less than 100 milliseconds to insure power up reset for all the
devices connected to the bus.

Each device connected to the bus should have a de-coupling capacitor of 10µF
connected to the +5V and GND lines.

Off-Board ACCESS.bus devices may get the +5V from their own power supply and not
use the host's +5V supply. The device's external power supply should provide a power
up reset when power is applied to the bus by the host. The external +5V power supplies
are connected to the Off-board ACCESS.bus by GND pin only, the +5V must be
isolated from the Off-board ACCESS.bus +5V signal.

Off-board ACCESS.bus host's power supply or device's power supplies must supply a
minimum of 50mA and a maximum of 1A. Current limiting or over-current protection
is recommended. The current consumption of each device should be stated in the device
documentation.

Each Off-board ACCESS.bus device must have two ratings: maximum current in
milliamperes ("I") and maximum capacitive load in pF ("C").

Table 1.1: Typical Ratings of Off-board ACCESS.bus devices

Device Typical Rating
ACCESS.bus host computer I200 C100
ACCESS.bus cable, 1 meter I0 C65
ACCESS.bus keyboard I110 C20
ACCESS.bus mouse I30 C80

It is recommended that the ratings will be labeled on the device itself.

1.7.3. Maximum Number of Off-board Devices
The maximum number of Off-board ACCESS.bus devices is limited by three factors:

1. Device address - limited to 125 devices.
2. Power consumption - less than the host's power supply rating.
3. The capacitance on the bus - less than 1000pF.

ACCESS.bus Hardware Specification V3.0 1-11

The Off-board ACCESS.bus does not have any recommended topology or
configurations. The only restriction is to satisfy the limits of power consumption from
the host's power supply and not exceed the limit of 1000pF on the bus.

The maximum cable length is limited to maximum 10 meters.

For any cable length the bus must conform with the following limits:

1. The total capacitance on the bus should not to exceed 1000pF.
2. The voltage measured on pins +5V and GND of each device on the bus should not

drop in any case below 4.5V.
3. Plugging-in a new device to the bus should not drop the supply voltage to the other

devices below 4.5V

The cable length may exceed the limit of 10 meters by using an Off-board ACCESS.bus
repeater for the SDA and SCL signals.

1.7.4. Cable Shield
The cable shield is connected only to the host computer connector's case. The host's
connector case is connected also to the host's GND.

The cable's shield is not used by any device and not connected to any device.
The minimum resistance between the cable's shield to any signal on the bus is 100K
Ohms, while the cable is connected to all the devices and disconnected from the host.

1.7.5. Pull-ups and Series Resistors
The host provides a pull-up resistor or a 6mA current source for both the SDA and the
SCL open drain signals.

The pull-up resistors or the current sources provide 6mA per line to pull the line to
HIGH logic level. The minimum pull-up resistor is 820 Ohms.

A 51 Ohm maximum series resistor is connected between the SDA and SCL pins on
each device and the corresponding signals on the Off-board ACCESS bus. This resistor
smoothes the bus signals and offers additional ESD (electrostatic discharge) protection
to the device. Two clamping diodes to GND and +5V offer additional ESD protection.
The diodes are needed only if they do not exist in the devices controller.

820 Rs

51

Device

Rp

Host
VCC

GND

SCL or SDA

Figure 1.16: Pull-up and serial resistors for the SDA and SCL lines

ACCESS.bus Hardware Specification V3.01-12

1.7.6. Main Differences Between the I2C and Off-board ACCESS.bus
1. The Off-board ACCESS.bus specifies a connector and a cable. I2C-bus does not.
2. The VCC and GND are supplied by the host in addition to the SDA and SCL. The

I2C-bus has only SDA and SCL lines.
3. The master device always transmits data to a slave. In I2C-bus protocol the master

can also read from the slave.
4. Every device connected to the Off-board ACCESS.bus must be capable of being a

bus master and a bus slave.
5. The fast mode of the I2C-bus was omitted from this version of the Off-board

ACCESS.bus specification. The Off-board ACCESS.bus currently works only at
100Kbit/sec.

6. IOL = 6mA for the Off-board ACCESS.bus, vs. IOL = 3mA for the I2C-bus. The
pull-up resistors and the serial resistors for Off-board ACCESS.bus operation were
decreased to allow IOL = 6mA.

7. The maximum capacitance per line was increased from 400pF for the I2C-bus to
1000pF on the Off-board ACCESS.bus.

8. The Off-board ACCESS.bus maximum cable length without a repeater is 10
meters. The I2C-bus does not define a maximum cable length.

1.8. On-board ACCESS.bus

1.8.1. Current Sources, Pull-ups and Series Resistors
The host provides a 350 µa current source (recommended) or pull-up resistor for the
SDA and SCL open drain signals. An SM device, when asserting either the SCL or
SDA lines exhibits a total series resistance of less than 1100 ohms. An optional 700
ohm maximum series resistor may be connected between the SDA and SCL pins on
each device and the corresponding signals on the On-board ACCESS bus. This resistor
provides ESD (electrostatic discharge) protection to the device. Two optional clamping
diodes to GND and the device’s Vdd offer additional ESD protection.

Rs <= 700

Rds <= 400

OR Optional

Optional

Rp

SM Device

ACCESS.bus Host

Vdd

Figure 1.17 Current Sources and resistors for On-board ACCESS.bus

1.8.2. Main Differences Between the I2C and On-board ACCESS.bus
1. The fast mode of the I2C-bus was omitted from this version of the On-Board

ACCESS.bus specification. The On-Board ACCESS.bus currently works only at
100Kbit/sec.

2. IOL = 350µA for the On-board ACCESS.bus, vs. IOL = 3mA for the I2C-bus. It is
recommended that the pull-up resistors be replaced by current sources.

3. The maximum capacitance per line of 400pF for the I2C-bus was replaced with
required rise and fall times for On-board ACCESS.bus devices.

4. Logic levels “0” and “1 are fixed at 0.6V and 1.4V respectively.

ACCESS.bus Hardware Specification V3.0 1-13

ACCESS.bus Hardware Specification V3.01-14

1.9. Electrical Specifications and Timing For I/O Stages and Bus Lines
The I/O levels, and I/O current for ACCESS.bus devices are given in Table 1.2.a and 1.2.b. The
ACCESS.bus timing is given in Table 1.3. Figure 1.17 shows the timing definitions for the
ACCESS.bus.

Table 1.2.a Characteristics of SDA and SCL I/O stages for Off-board ACCESS.bus devices

Off-board devices
Parameter Symbol Min. Max. Unit

Supply voltage measured at the host VDD 4.75 5.25 V
Supply voltage measured at the device VDD 4.5 - V
LOW level input voltage:
fixed input levels
VDD -related input levels

VIL

-0.5 0.3VDD
V

HIGH level input voltage:
fixed input levels
VDD -related input levels

VIH

0.7VDD *1)
 V

LOW level output voltage (open drain or
open collector:
at 6 mA sink current

VOL 0 0.6 V

Output fall time from VIH min. to VIL max. with
a bus capacitance from 10 pF to 1000 pF:
with up to 6 mA sink current at VOL

tOF

- 2502)
ns

Input current each I/O pin with an input
voltage between 0.6 V and 0.9VDD max.

Ii -10 10 uA

1. maximum VIH = VDD max. +0.5V
2. cb = capacitance of one bus line in pF. Note that the maximum tF for the SDA and

SCL bus lines quoted in Table 1.3 (300 ns) is longer than the specified maximum
tOF for the output stages (250 ns). This allows series protection resistors (Rs) to
be connected between the SDA/SCL pins and the SDA/SCL bus lines.

ACCESS.bus Hardware Specification V3.0 1-15

Table 1.2.b Characteristics of SDA and SCL I/O stages for On-board ACCESS.bus devices

On-board devices
Parameter Symbol Min. Max. Unit

Range of Operating Voltages VDD 2.0 1) 5.0 1) V
LOW level input voltage:
fixed input levels
VDD -related input levels

VIL
-0.5
-0.5

0.6
0.3VDD

V

HIGH level input voltage:
fixed input levels
VDD -related input levels

VIH
 1.4

0.7VDD

5.5
VDD+0.5

 V

LOW level output voltage (open drain or
open collector:
at 350 uA sink current

VOL 0 0.4 V

Output fall time from VIH min. to VIL max. with
a bus capacitance from 10 pF to 1000 pF:
with up to 350 uA sink current at VOL

tOF

- 250
ns

Maximum leakage current ILEAK 10 2) uA
Maximum current through On-board pull-up resistor
or current source

IPULLUP 100 350 2) uA

1. On-board ACCESS.bus operating voltages are defined at VDD +/- 10%
2. Because of the low pullup current, devices connected to On-board ACCESS.bus

should maintain low leakage currents in order to prevent unnecessary bus loading.
Devices connected to On-board ACCESS.bus MUST maintain the maximum
leakage current specification even while unpowered.

ACCESS.bus Hardware Specification V3.01-16

Table 1.3: Characteristics of SDA and SCL bus lines for ACCESS.bus devices

Access.bus Unit
Parameter Symbol Min. Max.

SCL clock frequency fSCL 0 1

10
100 kHz

Bus free time between a STOP and START condition tBUF 4.7 - us
Hold time (repeated) START condition. After this
period, the first clock pulse is generated

tHD;STA 4.0 - us

LOW period of the SCL clock tLOW 4.7 - us
HIGH period of the SCL clock tHIGH 4.0 -

50 2
us

Set-up time for a repeated START condition tSU;STA 4.7 - us
Data hold time:
for Access.bus devices

tHD;DAT 0 3

300 - ns

Data set-up time tSU;DAT 250 - ns
Rise time of both SDA and SCL signals 4 tR - 1000 ns
Fall time of both SDA and SCL signals tF - 300 ns
Set-up time for STOP condition tSU;STO 4.0 - us

Off-board ACCESS.bus
Capacitive load for each bus line with pull up Cb - 1000 pF
Capacitive load for each bus line with current source - - 1500 pF
Cable length - - 10 meter
Pull-up resistor Rp 820 - Ohm
Serial resistor Rs - 51 Ohm
Cable Capacitance C - 70 pF/m

On-board ACCESS.bus
SM device timeout tTIMEOUT 25 35 ms
Cumulative clock low extend time SM slave device 5 tLOW;SEXT - 25 ms
Cumulative clock low extend time SM master device
6

tLOW;MEXT - 10 ms

Note: When two values appear for one parameter, the unshaded portion is for Off-board devices and
the shaded portion for On-board devices.

1. See Section 2.8.3 for Off-board minimum data rate definition.
2. The maximum tHIGH value provides On-board devices a guaranteed method to

detect an idle bus.
3. An Off-board device must internally provide a hold time of at least 300 ns for the

SDA signal (referred to the VIH min of the SCL signal) in order to bridge the
undefined region of the falling edge of SCL.

4. Rise time is measured from VSS to 0.7 VDD. For On-board devices, VDD is
assumed to be 2 volts.

5. tLOW;SEXT is the cumulative time an SM slave device is allowed to extend the
clock cycles in one message from the initial start to the stop. If an SM slave device
exceeds this time, it is expected to release both its clock and data lines and reset
itself.

6. tLOW;MEXT is the cumulative time an SM master device is allowed to extend its
clock cycles within each byte of a message as defined from start-to-ack, ack-to-ack,
or ack-to-stop.

ACCESS.bus Hardware Specification V3.01-16

P
SU;STO

t

tHD;STA

S
tSU;STASU;DATtHIGHt

F
t

HD;DAT
tHD;STAt

RtLOWt

S

BUFt

P

SDA

SCL

Figure 1.18: Definition of timing on the ACCESS.bus

SECTION 2

ACCESS.bus

Base Protocol Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in
its entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a

license to use these components in an I2C system, provided that the system conforms to I2C
specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1 -408-991-3773

2. ACCESS.bus Base Protocol .. 2-1

2.1. Programmable Address (PA) Base Protocol Subset... 2-1

2.1.1. General Description... 2-1

2.1.2. Message Format .. 2-1

2.1.3. ACCESS.bus Protocol Messages ... 2-3

2.1.4. Addressing .. 2-3

2.1.5. Identification... 2-4

2.1.5.1. Random versus Serial Device Numbers .. 2-4

2.1.6. Capabilities Information.. 2-5

2.1.6.1. Capabilities String Syntax and Semantics ... 2-6

2.1.6.2. Standard Capabilities and Conventions ... 2-6

2.1.6.3. Binary Data in Capabilities Strings ... 2-8

2.1.7. Configuration Process.. 2-8

2.1.7.1. Power-up/Reset Phase... 2-8

2.1.7.2. Identification Phase .. 2-8

2.1.7.3. Capabilities Phase... 2-9

2.1.7.4. Normal Operation... 2-9

2.1.8. Timing Rules... 2-9

2.1.8.1. Bus Timing... 2-9

2.1.8.2. Response Timing .. 2-9

2.1.8.3. Minimum Device Performance ... 2-10

2.1.9. Exception Handling... 2-11

2.1.10. Detailed Command/Message Descriptions... 2-12

2.1.10.1. Command Coding... 2-12

2.1.10.2. Device Data Stream Message.. 2-13

2.1.10.3. Device Defined Control/Status (C/S) Messages... 2-13

2.1.10.4. Pre-defined C/S Messages, Interface Part.. 2-14

2.1.10.4.1. Reset ...2-14

2.1.10.4.2. Attention ...2-14

2.1.10.4.3. Identification Request..2-15

2.1.10.4.4. Identification Reply...2-15

2.1.10.4.5. Assign Address..2-16

2.1.10.4.6. Capabilities Request ..2-17

2.1.10.4.7. Capabilities Reply ...2-17

2.1.10.4.8. Enable Application Report...2-18

2.1.10.4.9. Presence Check ...2-18
2.1.10.5. Resource Request (Optional) .. 2-19

2.1.10.6. Resource Grant (Optional) .. 2-20

2.1.10.7. Vendor Reserved Commands (Optional Interface Part) ... 2-20

2.1.11. Pre-defined C/S Messages, Application Part .. 2-21

2.1.11.1. Application Hardware Signal (Optional) ... 2-21

2.1.11.2. Application Test ... 2-21

2.1.11.3. Application Test Reply ... 2-22

2.1.11.4. Application Status Message .. 2-22

2.1.12. Device Power Management (Optional) .. 2-23

2.1.12.1. Device Power Management Command ... 2-24

2.1.12.2. Power Management Capabilities String .. 2-25

2.1.12.3. Power Management Resource Request command ... 2-26

2.1.12.4. Power Management Resource Grant command ... 2-27

2.1.12.5. Power Management Status Message.. 2-27

2.1.13. Device Bandwidth Management (Optional) ... 2-28

2.1.13.1. Bandwidth Management Capabilities String ... 2-28

2.1.13.2. Device Bandwidth Management Command .. 2-29

2.1.13.3. Device Bandwidth Usage Reply.. 2-29

2.1.13.4. Bandwidth Resource Request command ... 2-29

2.1.13.5. Bandwidth Resource Grant command ... 2-30

2.2. Fixed Address (FA) Base Protocol Subset ... 2-30

2.2.1. System Management devices.. 2-30

2.2.2. On-board ACCESS.bus Host Addresses... 2-30

2.2.3. System Management device command support.. 2-30

2.2.3.1. Quick Command... 2-31

2.2.3.2. Send Byte ... 2-31

2.2.3.3. Receive Byte .. 2-31

2.2.3.4. Write Byte/Word .. 2-31

2.2.3.5. Read Byte/Word ... 2-32

2.2.3.6. Process Call .. 2-32

2.2.3.7. Block Read/Write ... 2-32

2.2.4. Communicating with the On-board ACCESS.bus Host .. 2-33

Appendix A. ACCESS.bus Interface Op-codes Summary... 2-34

Appendix B. Reserved ACCESS.bus Device Addresses... 2-35

Appendix C. Definitions.. 2-36

ACCESS.bus Base Protocol Specification V3.0 2-1

2. ACCESS.bus Base Protocol

The ACCESS.bus 3.0 base protocol consists of two subsets called Programmable Address (PA) protocol
and Fixed Address (FA) protocol respectively. An ACCESS,bus device may implement either PA or FA
protocol subset, or the complete base protocol. The same protocols apply to either On-board or Off-
board devices. Off-board devices implementing the PA protocol subset are identical to those defined in
previous versions of the ACCESS.bus specification. On-board devices implementing the FA protocol
subset are called System Management (SM) devices .

At the system level, ACCESS.bus includes several software layers. Those include the base protocol, the
device driver interface, and several specific device protocols (keyboard, locator, text, battery system
etc.). Other chapters of this specifcation define the interfaces above the base protocol layer. These
interfaces are the same regardless of which subset of the base protocol is supported at the device level.

2.1. Programmable Address (PA) Base Protocol Subset

NOTE: IN SECTION 2.1 , “ACCESS.bus” REFERS TO THE PA SUBSET OF THE
ACCESS.bus BASE PROTOCOL

2.1.1. General Description
Every device on the bus must support either the On-board or Off-board ACCESS.bus
physical layer interface.

A message transmits information between a device and the computer or between the
computer and one or more devices. There is one exception: a device may attempt to
reset other devices assigned to the same address by sending a Reset message to itself.

Initially, all devices respond to a default power up address. During the configuration
process the computer assigns a unique address to every device on the bus. ACCESS.bus
supports multiple devices of the same type, or different types without switches or
jumpers.

The bus supports dynamic reconfiguration while the system is operating. Connecting
new devices shall not require powering down or rebooting the system before the new
devices can be used ("hot plugging" is permitted).

2.1.2. Message Format
ACCESS.bus messages have the following format:

2-2 ACCESS.bus Base Protocol Specification V3.0

Bit Number
MSB LSB

Byte Number 7 6 5 4 3 2 1 0
1 destaddr 0 Destination address

2 srcaddr 0 Source address

3 P length Protocol flag,
message length

4 body 1 to 127 bytes

.

.

.
Length + 4 checksu

m

Figure 2.1: ACCESS.bus Message Format

Messages are either Device Data Stream (P=0) or control/status (P=1), as indicated by the
protocol (P) flag. The minimum length of a message shall be four bytes. The maximum
theoretical length of a message is 131 bytes (127 data bytes and four bytes for overhead); the
maximum practical length is constrained by the transmission speed and the maximum time a
device may hold the bus as master (see Timing Rules).

The message checksum shall be computed as the logical XOR of all previous bytes, including
the message address. The checksum shall be computed such that the logical XOR of all previous
bytes plus the ECC is equal to zero (0). A device or the computer shall only execute commands
with a valid checksum.

ACCESS.bus data follows Big Endian bit order (see section 1). The most significant bits are
always sent first.

The standard byte order for multibyte integers is Big Endian.

Example:
S 6E A 50 A 81 A F1 A 4E A P

Where:

S START Signal
6E destination address (device default)
A Acknowledge pulse from receiver
50 source address (computer)
81 Control/Status length 1
F1 Identification Request
4E Checksum
P STOP Signal

Figure 2.2: ACCESS.bus Message Example

ACCESS.bus Base Protocol Specification V3.0 2-3

2.1.3. ACCESS.bus Protocol Messages
The ACCESS.bus protocol defines nine required interface messages that are summarized below.
Parameters defined within the body of the message are listed in parenthesis.

Table 2.1: Protocol Messages

Computer-to-device Messages Purpose
Reset() Force device to power-up state and default

ACCESS.bus address.
Identification Request() Ask device for its "identification string."
Assign Address(ID strng, new addr) Tell device with matching "identification string" to

change its address to "new address."
Capabilities Request(offset) Ask device to send the fragment of its capabilities

information that starts at "offset."
Enable Application Report Enable or disable a device to send application reports

to the host computer
Presence Check Check if the device is present on the bus at the

specific address.
Device-to-computer Messages Purpose
Attention Inform computer that a device has finished its power-

up/reset test and needs to be configured.
Identification Reply(ID string) Reply to Identification Request with device's unique

"identification string."
Capabilities Reply(offset, data frag) Reply to Capabilities Request with "data fragment," a

fragment of the device's capabilities string; the
computer uses "offset" to reassemble fragments.

2.1.4. Addressing
ACCESS.bus addresses follow the address format defined below. The LSB shall be zero (0) to
indicate a master transmitter or write operation. The LSB shall be one (1) to indicate a master
read operation.

MSB LSB
A7 A6 A5 A4 A3 A2 A1 A0

Figure 2.3: ACCESS.bus Address Format

The following ACCESS.bus addresses are pre-assigned (even numbers only):

50h host computer address

10h SM device host address

6Eh power up default address for all devices

02-4Eh; 52-6Ch; 70-FEh 125 assignable ACCESS.bus device addresses (with
certain specific exceptions for monitor and System
Management devices)

2-4 ACCESS.bus Base Protocol Specification V3.0

An Off-board ACCESS.bus computer implementation must support the 125 assignable device
addresses noted above. An On-board ACCESS.bus implementation may support the 125
assignable device address as noted as well as provide support for its particular collection of
System Management devices.

The computer addresses shall never be changed unless the computer wants to simulate a device.
This feature may be useful for debugging.

At power up or after a reset command, devices will respond to the default address (6Eh) except
for FA- ACCESS.bus devices which may have pre-assigned addresses.

The least significant bit of the source address field which is not used for addressing (indicates
R/W in destination address) is reserved for future protocol extension. Conforming devices shall
transmit this bit as zero and ignore received messages in which this bit is one until such
extensions, if any, are defined.

2.1.5. Identification
ACCESS.bus is a bus-topology network that uses unique identification strings to distinguish
devices. These strings are structured as follows:

protocol revision: 1 byte ("B")
module revision: 7 bytes (e.g., "V1.0 ")
vendor name: 8 bytes (e.g., "DEC ")
module name: 8 bytes (e.g., "LK501 ")
device number: 32-bit signed integer

The protocol revision shall be a single byte used to identify the protocol implementation to the
computer. This specification defines protocol revision "B" (42h). Any new protocol revisions
shall be approved by the ACCESS.bus Industry Group.

The module revision, vendor name, and module name strings are left justified ASCII character
strings padded with spaces. The content of these fields shall be determined by the device vendor.

The device number string shall be a 32-bit two's complement signed integer and may be either a
random number (if negative) or a unique serial number (if positive).

It is important to note that the host software should never attempt to recognize a device based on
the hardware ID string. Host software should always rely on the capabilities string fields for
device identification.

2.1.5.1. Random versus Serial Device Numbers
Identification Reply messages. Unique serial numbers are more expensive to
implement, but allow device identification and usage to be remembered
between sessions when the system has been turned off or device hot plugged.

When devices of the same type have to be physically identified, a fixed serial
number may be used. Example:

Three identical ACCESS.bus laser printers are located in three different
offices. Each printer reports a fixed serial number that is interpreted by the
user 's software as the physical location of the printer.

The purpose of the 32-bit device number is to distinguish otherwise like
devices with the same firmware. To aide ACCESS.bus management software,

ACCESS.bus Base Protocol Specification V3.0 2-5

serial numbers are reported as positive (2's complement integers), while
random numbers are always reported as negative.

If a pseudo random number is used in the Identification Reply message, it must
be produced in a way that will help distinguish like devices.

Guideline: The number of clock cycles since power on at the time a command
is received may be used as a pseudo random number. The natural dispersion of
resonator frequencies is usually sufficient to separate otherwise identical
devices.

A new pseudo random number must be generated if a reset command is
received. The pseudo random number shall not change between identify
reports unless an intervening power-up or reset command occurs.

2.1.6. Capabilities Information
Device capabilities is the set of information that describes the functional characteristics of an
ACCESS.bus peripheral. The purpose of capabilities information is to allow software to
recognize and use the features of bus devices without prior knowledge of their particular
implementation. By having locator devices report their resolution, for example, generic software
can be written to support a range of device resolutions. Capabilities information provides a level
of device independence and modularity.

The structure of capabilities information is designed to be simple and compact for efficiency, but
also extensible to support new devices without requiring changes to existing software or
peripherals. These objectives are supported by making the structure hierarchical and
representing capabilities information in a form that applications (and humans) can use directly.
The capabilities information shall be an ASCII string constructed from a simple, readable
grammar. The capabilities string for a locator might read as follows:

(
prot(locator)
type(mouse)
model(VSXXX-AA)
buttons(1(L)2(R)3(M))
dim(2) rel res(200 inch) range(-127 127)
d0(dname(X))
d1(dname(Y))
)

Capabilities information is normally constant for a device. However, the capabilities of some
devices may change over time. Devices whose capabilities change will notify the host with an
application Status Message when their capabilities have changed. The information shall describe
the potential operating modes and characteristics of a device. From the point of view of an
ACCESS.bus peripheral, capabilities information can simply be a string of bytes which is
transferred to the computer via the Capabilities Request and Capabilities Reply commands.

2-6 ACCESS.bus Base Protocol Specification V3.0

Capabilities information must be placed in the capabilities string in the following order:

prot()
type()
model()
pwr()
bwm()
protocol specific portions of the Capabilities string
device specific portions of the Capabilities string

prot, type, and model must always be the first three items in the capabilities string and they must
occur within the first sixty-four (64) characters. These three properties are used by the host
software to identify the appropriate device driver for the particular device.

2.1.6.1. Capabilities String Syntax and Semantics
Capabilities information shall be an ASCII string constructed from the simple
grammar as follows.

1. The terminal symbols of the grammar are STRING, TAG, WS, `(', and `)'.

2. WS is a sequence of one or more white space characters: SPACE, TAB, RETURN

or LF.

3. A STRING is a sequence of one or more non-white space characters. All

Capabilities data shall be represented as STRING: integers (123), floats (+3.0e8),
strings (keyboard). Special characters may be included in STRINGs by escaping
them as \xHH where HH represents two hexadecimal digits. SPACE, TAB,
RETURN, LF, `(', `)', and `\' are special characters and must be escaped as \xHH to
include them in STRINGs.

4. A TAG is a STRING which is immediately followed by a `('.

5. `(' and `)' are open and close parenthesis used for grouping.

6. The grammar allows STRINGs to be formed into lists separated by white space,

lists with tagged elements, and nested lists according to the following rules (BNF).

Capabilities ::= (cap string)
cap string ::= STRING
cap string ::= cap string WS cap string
cap string ::= TAG cap string)
cap string ::= TAG cap string) cap string

Notes:
1. All 8-bits of characters are significant. This is to allow 8-bit multinational character

sets such as ISO Latin-1 to be used.
2. Keyword comparisons are not case sensitive.
3. Capabilities are hierarchical. The meaning of a keyword within a tagged list

depends on the tagged list in which it appears.

2.1.6.2. Standard Capabilities and Conventions
Certain keywords appearing at the top level of a capabilities string are defined
to have standard meanings within the ACCESS.bus protocol as follows:

ACCESS.bus Base Protocol Specification V3.0 2-7

Keyword Meaning
prot() The “prot()” entry identifies the generic protocol or device

type to system software. prot() is the device driver's view of
a device. prot() defines the behavior of a device in terms of
commands and responses in addition to those defined in the
Base Protocol.

prot(keyb) generic keyboard
prot(locator) generic locator
prot(text) generic text
type() The “type()” entry is intended to identify the device type to

the user in a recognizable form. type() is a user's view of a
device. That is, a joystick, mouse, or whatever. It is also a
second level identifier of the device used by the system
software.

type(keyboard) Keyboard
type(mouse) Mouse
type(digitizer) Digitizing tablet
type(tball) Trackball
type(ptrstick) Force activated joystick (typically embedded in keyboards)
type(touchscn) Touchscreen
type(dial) Dials, arrays of dials, and other single axis valuators
type(swpad) Switch pads, such as those used for game control, where a set

of switches are used to control position and functions. (as
opposed to keyboard)

model() The “model()” entry is provided to present the full model
name to the user if different from the module name. The
“model()” entry is optional. It is also a third level identifier
of the device used by the system software.

pwr() Power management capability string, see Section 2.11.3
bwm() Bandwidth management capability string, see Section 2.12.1

The following capability usage convention is recommended to maximize
compatibility between hardware and software from different vendors.

1. Tags used as keywords to identify device features should be no more than eight
characters in length (only the first eight characters are significant). Characters A-Z,
a-z, and 0-9 are assumed to be handled transparently on all systems.

 Device features or events that are represented by bit positions should be numbered

sequentially starting with "1" for the least significant bit (bit 0). For example,
locator buttons within a 16 bit keyswitch word might be identified as
"buttons(1(L)2(R)3(M))". 1 is related to bit 0, 2 is related to bit 1, and 3 is related to
bit 2.

 Example: The Keyswitch word represents the possible 16 functional buttons of a

locator.

M R L

The first bit of the first byte transmitted

MSB LSB
KEYSWITCH WORD

2-8 ACCESS.bus Base Protocol Specification V3.0

Figure 2.4: Keyswitch Word

3. Features controlled by a numeric value parameter can be described by the feature
name as a tag followed by the parameter range. If the range is from zero to
maximum, the zero minimum value can be omitted. Keyclick volume ranging from
0 (off) to 7 (maximum) can be described as "click(7)" for example. It is suggested
that these values not be normalized. By not normalizing it is possible to preserve the
full resolution of the device, thus allowing the computer to determine the smallest
meaningful volume increment.

Specific additional capabilities are defined in generic device protocol specifications.
Generic specifications for keyboards, locators, and text devices have been developed
to date.

2.1.6.3. Binary Data in Capabilities Strings
To include binary information in the Capabilities string a new keyword bin is
defined. The binary data within the Capabilities string has the following
format:

bin(count(binary data bytes))

where count is an integer count of the number of binary data bytes.

2.1.7. Configuration Process
The configuration process shall be used to detect the devices that are present on the bus, assign
each device a unique address, and connect devices to the appropriate software driver.
Configuration shall occur at system start-up, or at any time when the computer detects the
addition or removal of a device.

2.1.7.1. Power-up/Reset Phase
When reset or powered-up, a device shall always revert to the default address
and send an Attention message to alert the computer to its presence. At system
start-up or reinitialization, the computer shall send a Reset message to all
ACCESS.bus addresses in the ACCESS.bus device address range to insure that
all devices on the bus respond at the power up default address.

2.1.7.2. Identification Phase
To begin address assignment, the computer sends an Identification Request
message at the device default address. Every device at this address must then
respond with an Identification Reply message. As each device sends its
message, the ACCESS.bus physical layer arbitration mechanism automatically
separates the messages based on the identification strings. The computer can
then assign an address to each device by including the matching identification
string in the Assign Address message. A device that receives this message and
finds a complete match with the identification string moves its device address
to the new assigned value. As soon as a device has a unique address, it shall
change to 'on line state' in a 'disable mode'. in this state the device is waiting to
receive an "Enable Application Report" control message from the host to start
sending its application reports.

The ACCESS.bus physical layer bus protocol allows multiple devices on the
bus at the same time, if those devices are transmitting exactly the same
message. In the rare event that two like devices report the same random
number or are mistakenly assigned to the same address, each interactive device

ACCESS.bus Base Protocol Specification V3.0 2-9

transmits a Reset message to its assigned address immediately prior to sending
its first data message after being assigned a new address. The self-addressed
Reset message forces other devices at the same address back to the power-up
default address, as if they had just been hot-plugged. The message guarantees
that each device has a unique address, but not until the device is actually used.
The pseudo random number (or serial number, if available) distinguishes
devices at identification time before they are used, allowing the computer to
inventory which devices are present.

2.1.7.3. Capabilities Phase
After assigning a unique address to a device, the computer retrieves the
device's capabilities string as a series of fragments using the Capabilities
Request and Capabilities Reply messages. The computer then parses the
capabilities string to choose the appropriate application driver for the device.
The parsed string shall also be made available to application programs using
the device.

2.1.7.4. Normal Operation
During normal operation, the ACCESS.bus manager periodically checks the
presence of all devices on the bus. If a device is found to be missing, the bus
manager will notify the device driver with a Device Disconnected message
and will update the device table.

2.1.8. Timing Rules

2.1.8.1. Bus Timing
Since the ACCESS.bus may be shared by multiple peripheral devices, it is
important to assign the bus bandwidth in such a way that every device will be
able to send (or receive) its messages on time. Assuming that the bus
bandwidth is sufficient to serve all the devices, we need a mechanism that will
control the time duration and the rate that each device occupies the bus. This
mechanism is the Bandwidth Management that is described later in this
section. Since the Bandwidth Management is optional it is important that each
device will obey the following timing rules:

1. A device must allow at least fifty microseconds (50 microseconds) between
releasing bus mastership at the end of a message and requesting to become bus
master again. This is to give other devices a chance to access the bus without
arbitration.

2. ACCESS.bus interfaces shall not hold SCL low for more than two milliseconds

(2ms). A watchdog timer or other provision shall be implemented by each device to
assure it releases SCL before the two millisecond (2ms) limit is reached.

2.1.8.2. Response Timing
Time limits for certain commands to execute are specified so that the computer
can determine when all the devices present have had sufficient time to respond
(time out). The following limits apply:

1. Devices shall complete the Reset command or the power on reset within 250ms.
This is believed to be long enough for basic power up self test (from stable power)
without causing excessive delays. All devices should attempt to minimize this time.

2-10 ACCESS.bus Base Protocol Specification V3.0

2. Devices shall respond to all other commands that require a response within forty
milliseconds (40ms).

3. If a command can be responded to by more than one device, the time limit shall be

extended to forty milliseconds (40ms) since the last device that responded.

2.1.8.3. Minimum Device Performance
Each device connected to the ACCESS.bus, including the host, can affect the
overall bus performance. When a device is transmitting as a bus master if the
device is too slow it occupies the bus for a longer time than is necessary and
reduces the overall bus performance. Second, as a listener, if a device is too
slow, it slows the transmitting speed of the master device which also results in
lower bus performance.

To guarantee good ACCESS.bus performance all ACCESS.bus devices should
comply with the following requirements.

1. The host interface acting as master transmitter shall transmit at a minimum data
rate of 8 Kbyte/sec (assuming that the receiver does not stretch the clock during the
message).

2. The host interface acting as a slave receiver shall not slow down the data rate to

less than 8 Kbyte/sec (assuming that the transmitter is faster than 8 Kbyte/sec).

3. Devices that in nominal bandwidth mode require 50% to 100% of the bus time

shall transmit at a minimum rate of 8 Kbyte/sec (assuming that the receiver does
not stretch the clock during the message) and as a receiver shall not slow down the
data rate to less than 8 Kbyte/sec (assuming that the transmitter is faster than 8
Kbyte/sec).

4. Devices that in nominal bandwidth mode require 25% to 50% of the bus time shall

transmit at a minimum rate of 7.5 Kbyte/sec (assuming that the receiver does not
stretch the clock during the message) and as a receiver shall not slow down the data
rate to less than 7.5 Kbyte/sec (assuming that the transmitter is faster than 7.5
Kbyte/sec).

5. Devices that in nominal bandwidth mode require 10% to 25% of the bus time shall

transmit at a minimum rate of 7 Kbyte/sec (assuming that the receiver does not
stretch the clock during the message) and as a receiver shall not slow down the data
rate to less than 7 Kbyte/sec (assuming that the transmitter is faster than 7
Kbyte/sec).

6. Devices that in nominal bandwidth mode require 0% to 10% of the bus time shall

transmit at a minimum rate of 6 Kbyte/sec (assuming that the receiver does not
stretch the clock during the message) and as a receiver shall not slow down the data
rate to less than 6 Kbyte/sec (assuming that the transmitter is faster than 6
Kbyte/sec).

7. A peripheral device or host interface acting as slave receiver shall ignore any data

on the bus, therefore not affect the transmission data rate, if the destination address
of the message does not match the device's address. The peripheral device or host
interface shall start listening to the bus again after they have detected the previous
message Stop condition.

ACCESS.bus Base Protocol Specification V3.0 2-11

2.1.9. Exception Handling
The following general requirements and recommendations are defined for handling
ACCESS.bus exception conditions. Additional requirements may be defined by the individual
device protocol specifications.

1. Arbitration Loss - If a device detects that it has lost arbitration, the device shall cease
transmitting and then try again to become bus master to resend the message. If the device
was trying to send an Attention, Identification Reply or Capabilities Reply message then
the device should get bus ownership as soon as possible, and try to send the message again.
The device should try as many times as necessary until the message is received by the host.

2. If the message is an application report, it is the device's decision whether to discard the

message, or to re-send the message. In general, devices should retry as many times as
necessary to win arbitration and send their message.

3. Negative Acknowledge - If a device transmits a byte which is negatively acknowledged (no

receiver, or rejected for some reason), or if the bus times out, the device shall abort the
transfer immediately by generating a Stop condition. If the device was trying to send an
Attention, Identification Reply or Capabilities Reply message then the device should get bus
ownership as soon as possible, and try to send the message again. The device should try as
many times as necessary until the message is received by the host.

4. If the message is an application report, it is the device's decision whether to discard the

message, or to re-send the message.

5. Checksum Error - If a device detects a checksum error in a received message, the message

data shall be ignored.

6. Premature STOP - If a device detects a premature STOP signal before the end of a message

is reached, the message data shall be ignored.

7. If the computer detects a checksum error or premature STOP condition, it is suggested the

computer log the error and re-issue its most recent request to that device. A large number of
interface errors may indicate a software error or faulty hardware configuration. In this case,
it is suggested the computer notify the user and attempt to restart the configuration process.

8. Repeated STOP - A device should not respond to any event of a repeated STOP signal.

9. Unrecognized Commands and Parameters - If a device receives a command with valid

checksum but does not recognize the command op-code, the entire command shall be
ignored. If a device receives a command with valid checksum but does not recognize the
value of a required parameter, the entire command shall be ignored. If a device receives a
command with valid checksum that includes additional data beyond that expected, it is
recommended the additional data be ignored, however, the device may execute the
command.

10. A device will never hang up the bus by pulling the SCL or the SDA lines to low level for

more than 2msec. Every device has to have a watchdog mechanism to release the bus after
the 2 msec period.

11. A device must respond to the default address (6EH) before it is assigned an address by the

host, and to its assigned address afterwards. As an exception, a device can negatively

2-12 ACCESS.bus Base Protocol Specification V3.0

acknowledge the message when the device is busy with internal data processing. A well
behaved device should minimize the number of these situations.

2.1.10. Detailed Command/Message Descriptions

2.1.10.1. Command Coding
For the purpose of illustrating message encoding, the following notation is
used:

PLLLLLLL ‘P’ is a 1-bit protocol flag:
P=0 denotes a data stream;
P=1 denotes a control/status message

LLLLLLL is a 7-bit length field that encodes values 0-127
ddddddd0 = 7-bit destination ACCESS.bus address plus 0 as the LSB
sssssss0 = 7-bit source ACCESS.bus address plus 0 as the LSB
xxxxxxxx = 8-bit message op-code
cccccccc = 8-bit checksum

Numeric values are always transmitted MSB first.

ACCESS.bus messages are either Device Data Stream (P=0), or Control
/Status (P=1). Data Stream messages always refer to the application part of a
device, as opposed to the interface part. The coding of Data Stream messages
is dependent on the device. They are not pre-defined or restricted by the
ACCESS.bus protocol.

Data Stream Msg Control/Status Msg
ddddddd0 ddddddd0
sssssss0 sssssss0
0LLLLLLL 1LLLLLLL
| xxxxxxxx op code
body[0-127] |
| body[0-126]
cccccccc |

cccccccc

The first data byte of Control/Status messages (P=1) shall always be an op-
code. Control/Status messages may refer to either the application part or the
interface part of a device. Pre-defined Control/Status op-codes (messages) are
used to initialize and configure ACCESS.bus devices. A range of
Control/Status op-codes are reserved for private use by devices and will not be
pre-defined as part of the ACCESS.bus protocol.

The breakdown of ACCESS.bus message types is shown in the following
diagram:

ACCESS.bus Base Protocol Specification V3.0 2-13

ACCESS.bus Message

P= 0 P= 1

Data Stream
Application part
Device dependent

Control/Status

op-code=0xxxxxxx op-code=1xxxxxxx

Data defined
Application part
Device dependent

Pre-defined
device independent

Application part

op-code=10xxxxxx op-code=11xxxxxx

Interface part

Figure 2.5: ACCESS.bus Message Types Breakdown

2.1.10.2. Device Data Stream Message
These messages are usually used for the bulk of the device's data. The intent is
that the most common messages (keypress reports, locator movements, etc.)
should be easiest to send and have the lowest overhead. Device Data Stream
messages are distinguished by the Protocol flag bit being zero. The body of
these messages are defined by the individual device protocol specifications.

Devices are not permitted to send device data stream messages at the power
on Default Address. After a successful Assign Address command, devices shall
change into an on line state in a disabled mode. After receiving an Enable
Application Report command the device should send a self addressed reset
message immediately prior to transmission of its first application report.

2.1.10.3. Device Defined Control/Status (C/S) Messages
Device control or status information shall be sent with the protocol flag set to
one (P=1). Op-codes in the range 00h to 7Fh are reserved for device defined
peripheral messages (application part). Refer to the individual device protocol
specifications for details.

2-14 ACCESS.bus Base Protocol Specification V3.0

2.1.10.4. Pre-defined C/S Messages, Interface Part
Interface Part Control/Status messages are used to control the ACCESS.bus
itself.

2.1.10.4.1. Reset

A Reset message shall be used to instruct the addressed device(s) to reset to the
power up state.

Format:
ddddddd0
sssssss0
10000001 (81h, P=1, length=1)
|
11110000 (F0h, Reset op-code)
|
cccccccc

This command is intended to be completely equivalent to power on reset
including changing of device address to the Default Address, power on self
testing, and transmission of an Attention message at the Default Address.

Notes:
1. The device shall ignore all commands from the computer until it has

completed power-up processing and transmitted a successful Attention
message. This is the only command which may cause a device to
temporarily ignore bus messages.

2. A device must wait at least eight milliseconds (8ms) after its ACCESS.bus
hardware is reset before transmitting to insure its ACCESS.bus hardware
has synchronized with any message frame in progress.

3. The Reset command must be completed within 250ms (excluding the time
spent waiting to become bus master).

4. Because the ACCESS.bus does not have a General Call or Broadcast
address, the ACCESS.bus shall be reset by issuing Reset commands to all
125 standard ACCESS.bus device addresses.

2.1.10.4.2. Attention

An Attention message shall be sent by a device to the computer. This message
notifies the computer that a device needs attention after power up or reset.

Format:

ddddddd0
sssssss0
10000001 (81h, P=1, length=1)
|
11100000 (E0h, Attention op-code)
|
cccccccc

ACCESS.bus Base Protocol Specification V3.0 2-15

Notes:
1. This message must be transmitted within 250ms after a reset command or

stable power is applied (excluding time spent waiting to become bus
master).

2. A device must wait at least eight milliseconds (8ms) after its ACCESS.bus
hardware is reset before transmitting to insure its ACCESS.bus hardware
has synchronized with any message frame in progress.

3. The device must ignore all commands from the computer until it has
completed power-up processing and transmitted a successful Attention
message. Devices that fail must not respond to any commands.

4. Because Attention is only generated after power on or reset, it will always
be transmitted at the Default Address. Receiving an Attention message
shall indicate to the computer that a device is present on the bus and
awaiting configuration.

2.1.10.4.3. Identification Request

An Identification Request message shall instruct the addressed device(s) to
send a complete identification report (see Section 2.10.4.4 - Identification
Reply).

Format:

ddddddd0
sssssss0
10000001 (81h, P=1, length=1)
|
11110001 (F1h, Identification Request op-code)
|
cccccccc

The Identification Request message will cause all devices at the Default
Address to send a unique identification string so that the computer can assign
each device to a distinct address.

2.1.10.4.4. Identification Reply

The Identification Reply message shall be issued by a device in reply to an
Identification Request message. The reply shall consist of a string that
identifies the device hardware. A four byte pseudo random number (or serial
number if available) shall be included in order to distinguish like hardware
devices.

2-16 ACCESS.bus Base Protocol Specification V3.0

Format:

ddddddd0
sssssss0
10011101 (P=1, length=29)
|
11100001 (E1h, Identification Reply op-code)
protocol revision (1 byte, "B")
module revision (7 bytes, e.g., "V1.0 ")
vendor name (8 bytes, e.g., "DEC ")
module name (8 bytes, e.g., "LK501 ")
device number (32 bit signed integer)
|
cccccccc

The module revision, vendor name, and module name shall be left justified
ASCII strings padded with the space character (20h). See "Random versus
Serial Device Numbers" for a description of the device number.

2.1.10.4.5. Assign Address

An Assign Address message shall be issued by the computer to instruct the
addressed device(s) with matching identification strings to move to the
specified device address.

Format:

ddddddd0
sssssss0
10011110 (P=1, length=30)
|
11110010 (F2h, Assign Address op-code)
protocol revision (1 byte, "B")
module revision (7 bytes, e.g., "V1.0 ")
vendor name (8 bytes, e.g., "DEC ")
module name (8 bytes, e.g., "LK501 ")
device number (32 bit signed integer)
new A.b address (1 byte)
|
cccccccc

When a device receives this command and finds a complete match in the
protocol revision, module revision, vendor name, module name, and device
number field it moves its address to the new assigned value. If the device is
successfully assigned a new address, it shall be able to respond to messages at
the new address immediately, that is, on the next valid ACCESS.bus message
frame.

If the identify information does not match that of the receiving device, the
entire message shall be ignored.

Devices shall not transmit user data while at the Default Address. If the Assign
Address is successful, the device change to an on line state waiting for Enable
Application Report message to start sending its application reports. Once an

ACCESS.bus Base Protocol Specification V3.0 2-17

Enable Application Report message is received, the device shall send a self
addressed reset command on its new address immediately prior to sending its
first data report.

2.1.10.4.6. Capabilities Request

A Capabilities Request message shall be issued by the computer to a device to
instruct the addressed device to reply with a Capabilities Reply. The
Capabilities Reply shall contain data starting at "offset".

Format:

ddddddd0
sssssss0
10000011 (P=1, length=3)
|
11110011 (F3h, Capabilities Request op-code)
offset (16-bit unsigned integer)
|
cccccccc

The Capabilities Request and Capabilities Reply messages form a protocol for
transferring an arbitrary byte-string from the device to the computer, via a
series of fragments. "Offset" shall be the index (from 0) into this string. To
simplify the device's implementation of this protocol, "offset" shall be
restricted to three values:

1. "send first" zero, indicating the computer wants to start over at the
beginning;

2. "send again" the offset from the most recently transmitted Capabilities

Request, indicating the computer did not receive a response and wants a
retransmit;

3. "send next" the offset from the most recently received Capabilities Reply

plus the number of bytes in the message fragment. (new offset = old offset
+ fragment length) (fragment length = message length - 3).

With these restrictions the computer can make three requests: start over, send
current, and send next. See Capabilities Reply message for further details.

2.1.10.4.7. Capabilities Reply

A Capabilities Reply shall be used to reply to a Capabilities Request message
with a fragment of data starting at "offset".

Format:

ddddddd0
sssssss0
10LLLLLL (P=1, length=3-35)
|
11100011 (E3h, Capabilities Reply op-code)
offset (16-bit unsigned integer)

2-18 ACCESS.bus Base Protocol Specification V3.0

data (0-32 bytes)
|
cccccccc

The protocol is designed to be simple for the device to implement: The device
is free to choose the most convenient fragment size from one message to the
next.

The only state information the device should need to maintain is the current
offset and length of the most recently transmitted fragment.

On receiving a Capabilities Request message, the device shall examine the
"offset" field:

1. If equal to zero, the device shall set the current offset to zero and send the
fragment from offset zero (0).

2. If equal to the current offset, the device shall re-send the fragment from

the current offset.

3. If equal to the "current offset" + "fragment length", the device shall update

the current offset (current offset := current offset + fragment length) and
then look up (or calculates) the next fragment to send and sends it.

4. If the device has reached end-of-string, it shall send a fragment with the

next offset but zero data bytes. This will indicate an end of string.

5. Otherwise, the device shall set the "current offset" to zero and send the

fragment from offset 0.

2.1.10.4.8. Enable Application Report

An Enable Application report command shall be used to instruct an on line
device to start (Enable) or to stop (Disable) sending application reports.

Format:

ddddddd0
sssssss0
10000010 (82h, P=1, length=2)
|
11110101 (F5h, Enable Application Report op-code)
000000XX (XX=00 for disable, XX=01 for enable)
cccccccc

Device in the disable mode shall not send application reports.

2.1.10.4.9. Presence Check

This command is used by the host to check if a device is connected to the bus
and responding to its ACCESS.bus address. This message requires no response
from the device. The host uses the device acknowledge bits in each byte (see
section 1) as an indication for the device presence.

ACCESS.bus Base Protocol Specification V3.0 2-19

Format:

ddddddd0
sssssss0
10000010 (82h, P=1, length=2)
|
11110111 (F7h, Presence Check op-code)
00000000 (for future use)
cccccccc

2.1.10.5. Resource Request (Optional)
A Resource Request shall be sent by a device to request a resource from the
computer. The Resource Request command is optional, but is used by the
Power Management and Bandwidth Management commands.

Format:

ddddddd0
sssssss0
100xxxxx (P=1, length=n)
|
11100101 (E5h, Resource Request op-code)
res code (resource designator)
data (optional data)
|
cccccccc

Table 2.2 lists supported resource codes.

Table 2.2: Supported Resource Codes

Resource Code
(hex)

Description

01 Request ACCESS.bus address for private use. Data byte 1, if specified, shall
be the desired ACCESS.bus address.

02 Relinquish ACCESS.bus address. Data byte 1 shall be the ACCESS.bus
address to be relinquished.

03 Request time and date. No additional data provided.
04 Write data request. The host saves a block of data for the device. See

section 2.11.4, Power Management, for additional information.
05 Read data request. The host sends the block of stored data back to the

device. See section 2.11.4, Power Management, for additional information.
06 Request continued bus power. The device requests that the host continue to

provide power to it so that it can complete an operation in progress. See
section 2.11.4, Power Management, for additional information.

10 Request bandwidth from the host. The device requests permission to use
additional bus bandwidth. See section 2.12.4, Bandwidth Management, for
additional information.

2-20 ACCESS.bus Base Protocol Specification V3.0

2.1.10.6. Resource Grant (Optional)
The Resource Grant command shall be sent by the computer to a device to
indicate that a requested resource has been granted to the requesting device.

Format:

ddddddd0
sssssss0
100xxxxx (P=1, length=n)
|
11110100 (F4h, Resource Grant op-code)
res code (resource designator)
status (0=success, 1=unsupported,

2=failed- try again later, 4=failed)
data (optional data)
|
cccccccc

Table 2.3 lists supported resource codes.

Tabe 2.3: Supported Resource Codes

Resource Code (hex) Description
01 ACCESS.bus address granted for private use. Data

byte 2 shall be the ACCESS.bus address
02 Response to relinquish ACCESS.bus address. Data

byte 2 shall be the ACCESS.bus address
relinquished.

03 Current time and date.
Data bytes 2,3 = year
Data byte 4 = month
Data byte 5 = day of month
Data byte 6 = hour
Data byte 7 = minute
Data byte 8 = second
Data byte 9 = .01 second

2.1.10.7. Vendor Reserved Commands (Optional Interface Part)
A small range of op-codes are reserved for vendors to invoke private functions
for testing, alignment, or set-up at manufacturing time. These commands might
be used to down load an EEPROM with a serial number for example. These
commands are device dependent and should not be used during normal
ACCESS.bus operation. If these commands invoke any private modes, it is
recommended that such modes be exited by the Reset command (op-code
F0h).

Op-codes C0 to C8 hex are reserved for vendor specific use.

ACCESS.bus Base Protocol Specification V3.0 2-21

2.1.11. Pre-defined C/S Messages, Application Part

2.1.11.1. Application Hardware Signal (Optional)
The Application Hardware Signal shall be sent by a device to the computer. It
shall be used to instruct the computer ACCESS.bus controller to generate a
high priority hardware signal.

Format:

ddddddd0
sssssss0
10000010 (P=1, length=2)
|
10100000 (A0h, Application Hardware Signal op-code)
sigcode (signal code 1=reset, 2=halt, 3=attention)
|
cccccccc

The action taken by the computer on receiving this messages shall be
dependent on the computer. The intent is that the computer's ACCESS.bus
controller physically interrupt the computer.

Table 2.4: Application Hardware Signals

Number Name Purpose
1 Reset Attempt soft reset of host computer. If no response

within pre-set time limit, activate hardware reset
of host computer

2 Halt Primarily a debugging tool; could cause exit to a
ROM debugger

3 Attention Gain the attention of the computer

This command is optional for both the host computer and for the devices.

2.1.11.2. Application Test
An Application Test command shall instruct the addressed device to reply with
the results of a self-test specific to the device.

Format:

ddddddd0
sssssss0
10000001 (P=1, length=1)
|
10110001 (B1h, Application Test op-code)
|
cccccccc

This command shall be used by the Application driver to test the Application
Part of the device. When the command is issued, the device has already been
configured so the basic ACCESS.bus functions are assumed to be working.

2-22 ACCESS.bus Base Protocol Specification V3.0

Unlike power up testing, the device must respond promptly and may not
continue testing until the test succeeds; the device may not ignore other bus
commands while testing; and the testing shall not alter the application state. If
no application specific testing is required, it is recommended that the device
report the previous test results gathered during power up testing.

If useful in a particular application, the device may return a new test report
each time the Application Test command is received. The device's Application
driver may then issue Application Test commands until the device signals
success.

2.1.11.3. Application Test Reply
An Application Test Reply shall reply to an Application Test message with a
self-test report specific to the device.

Format:

ddddddd0
sssssss0
1LLLLLLL (P=1, length=2-32)
|
10100001 (A1h, Application Test Reply op-code)
status (0=passed, non-zero=failure)
body (0-30 bytes of additional test information)
|
cccccccc

The only restriction on the message is that the first byte of the body (status) be
zero if the test succeeded, and non-zero otherwise.

The computer may respond to a failed test report by either ignoring the
message (and the device), or printing the body of the message, perhaps in both
hexadecimal and ASCII (if printable).

2.1.11.4. Application Status Message
Devices may report changes in their status, or various error conditions to the
host computer by sending an Application Status Message. This message is
intended to be used for reporting information to device drivers about changes
in the application specific portion of the device. It includes both pre-defined
and private fields. The private fields are ignored by generic device drivers but
may be used to encode vendor status information for use by vendor supplied
device drivers.

Application Status Message - A2h 00h (optional)

Format:

ddddddd0
sssssss0
10000101 (85h, P=1, length=5)
10100010 (A2h, Application Status Message)
00000000 (00h, Second byte of Application Status Message

Command)
ssssssss (Status Code)

ACCESS.bus Base Protocol Specification V3.0 2-23

yyyyyyyy (Device specific data, set to 0 if unused)
yyyyyyyy
cccccccc

Device to Host 50 XX 85 A2 00 SS YY YY CS

Where:

A2h 00h is the Application Status MessageCommand.
SS is the status code

00 - Device ready
01 - Device not ready
02 - Device capabilities have changed
03 - Device has lost its internal state, most likely due to a failed state

restore operation after a low power suspend or power off mode.
04 - Device has lost applications data, most likely due to an internal

data buffer overrun.
05 - Reserved for vendor use, suggested for status changes.
06 - Reserved for vendor use, suggested for errors.

YY YY are two bytes of vendor specific data. Devices that do not use these
fields should return 00 00 in them.

2.1.12. Device Power Management (Optional)
The Device Power Management command shall be sent by the computer to a device to request
that the device change its operating mode in order to control power usage by the device, or to
notify a device of the computer's intentions to turn off the ACCESS.bus power supply. All of the
Device Power Management (DPM) commands are advisory, and a device may continue to
operate in the mode it is in as necessary to complete its tasks. As soon as possible, the device
should attempt to switch to the operating mode requested by the computer. Devices may also
make internal decisions with respect to which operating mode they should be in to control power
usage, and they may transition to a low power level without specific direction from the host
computer.

Devices which support power management should power up in the lowest power operating mode
possible.

There are five operating modes supported by the DPM commands, each requiring successively
less power:

1. Run. In this mode the device is operating at full power, and is either in operation or ready
for immediate use.

2. Standby. In standby mode the device has reduced its power consumption as much as is

possible while still being able to respond to applications data reports or operations without
undue delay or restart power consumption. For example, a laser printer would shut off its
toner fusing heater and imaging laser, but would probably leave its image rasterizing
processor and memory on.

3. Suspend. In suspend mode the device should reduce its power consumption to the lowest

possible level. Only Interface Part Control/Status messages will be sent to the device by the
computer while suspend mode is in effect. The device may send applications messages to
the computer, allowing the possible use of keyboard, mouse, or other peripheral events to

2-24 ACCESS.bus Base Protocol Specification V3.0

end a system wide suspend mode, however the computer may elect to ignore applications
messages received while it is in suspend mode.

4. Shutdown. Shutdown mode is equivalent to suspend mode except that the device may not

initiate a transition to a state which requires higher ACCESS.bus power on its own. (A
device in suspend mode could do so in response to some external event.) Shutdown mode
will be used by the host for ACCESS.bus power supply load shedding. In shutdown mode
the device should reduce its power consumption to the lowest possible level. Only Interface
Part Control/Status messages will be sent to the device by the computer while shutdown
mode is in effect. A device which has received a shutdown mode command shall remain in
shutdown mode until it receives another DPM command.

5. Power off. In each of the three operating modes the device's bus interface is still active, and

the device can respond to commands from the computer. In this mode the bus power supply
is turned off, causing all bus powered devices to be turned off. During an orderly shutdown
the computer will issue the Power Off DPM command to all DPM capable devices and then
wait for 100 ms after the last ACCESS.bus packet before shutting off the bus power supply.
Devices which require continued power to complete a task in process can request that the
computer leave the power on by using a Resource Request for power during this interval.
The computer will attempt to comply with the request, but may be unable to.

Devices entering Suspend, Shutdown or Power Off mode must, if at all possible, save their
internal state information so that they can resume operation transparently after they return to
Standby or Run mode. There are many ways to do this including local non volatile storage, a
device power supply separate from the ACCESS.bus, an ACCESS.bus power supply separate
from the host computer, and temporary storage of device state information by the host computer.
This last approach is supported by Resource Requests to read and write device data, and
additional DPM command, Restart, which is used to notify a device that has been powered off
that saved state information is available for it.

Devices that have saved their internal state in response to DPM Suspend or Shutdown command
using a Resource Write Data Request should restore their state when they receive a DPM Restate
command By using a Resource Read Data Request.

Devices that save their internal state in response to a DPM Power Off command using a
Resource Write Data Request should restore their state when they receive a DPM Restart
command by using a Resource Read Data Request. It is possible that the device's attempt to
restore its state will fail. In this case the device should retain its addressing and other bus
interface related state and restore the rest of its state to the condition it was in prior to attempting
to restore its state. The device should then notify its driver using the Application Status Message.

The host computer can query a device for its operating mode and power consumption by sending
the DPM Query power mode command. The device will respond with a Device Power Usage
Reply which includes the operating mode the device is in and optionally the devices actual or
estimated power consumption.

2.1.12.1. Device Power Management Command
Host to Device XX 50 82 F6 {00,01,02,03,04,05,06} CS

Where:

F6 - Device Power Management Command
00 - Run mode
01 - Standby mode

ACCESS.bus Base Protocol Specification V3.0 2-25

02 - Suspend mode
03 - Shutdown mode
04 - Power off advisory
05 - Restart
06 - Query power mode

Devices which only implement a subset of the Device Power Management
Command should simply ignore unimplemented commands, or treat
unsupported modes as equivalent to some supported mode. Thus, a keyboard
might treat Run mode and Standby mode commands identically.
Device Power Usage Reply
Device to Host 50 XX 87 E6 00 OM BH BL LH LL CS

Where:

OM is the operating mode
00 - Run mode
01 - Standby mode
02 - Suspend mode
03 - Shutdown mode
04 - ready for Power off

BHBL is a 16 bit integer representing the ACCESS.bus power usage in .01
watt units. A value of FFFFh indicates unknown power usage.

LHLL is a 16 bit integer representing the line power usage in .01 watt units. A
value of FFFFh indicates unknown power usage.

2.1.12.2. Power Management Capabilities String
Devices which support the Device Power Management command shall include
as a part of their capabilities string a tag pwr, and if possible the power
capabilities string specified below. The DPM capabilities must follow
immediately after the prot(), type(), and model() declaration

prot()
type()
model()
pwr({run() stdby() susp() shut() ssave() psave() })

where the { } brackets indicate optional items, and:

pwr() indicates a device that supports DPM commands but whose support for
specific modes is undisclosed and whose power consumption in different
modes in unknown.

run, stdby indicate that the device supports the named mod, and if susp and
numeric values are included what the power usage is for that mode.

ssave(#) indicates that the device can save its state across a suspend and if it
requires use of host computer resources approximately how many bytes of
data. Zero as an amount indicates that the actual number of bytes required is
unknown. No number indicates that the device does not require the use of host
resources.

2-26 ACCESS.bus Base Protocol Specification V3.0

psave(#) indicates that the device can save its state across a power off mode
and if it requires use of host computer resources approximately how many
bytes of data. Zero as an amount indicates that the actual number of bytes
required is unknown. No number indicates that the device does not require the
use of host resources.

The format of the power usage specifier is:

run({B}# {L#})

where power usage from the ACCESS.bus power supply is specified by either
a number with no prefix, or the prefix B followed by a number, and power
usage from another source is specified by the prefix L followed by a number.
In each case the number represents the approximate power consumption of the
device in .01 watt units.

For example, the power management capabilities string for a laser printer
which uses line power for its toner fusing heaters and rasterizer, and the
ACCESS.bus power supply only for its ACCESS.bus interface might be:

pwr(run(B10 L 10000) stdby(B10 L 10000) susp(B10 L2) ssave() psave())

This example device doesn't require any storage from the host computer to
save its state since it keeps a small amount of memory active using line power
even if the ACCESS.bus power is turned off.

For a keyboard that uses state save to save the state of its indicator lights, the
power management capabilities string might be:

pwr(run(15) susp(3) ssave() psave(1))

In this example the keyboard only requires storage from the host computer
when it will be totally powered off. Otherwise its local Microcontroller can
save the state of the indicator lights even though they are turned off during
suspend mode.

Devices do not need to fully disclose their power management capabilities in
the pwr string in order to receive DPM commands from the host computer,
however devices should disclose their state saving ability whenever possible.

2.1.12.3. Power Management Resource Request command
Resource Write Data Request - resource code 04

Device to Host 50 XX 100xxxxx E5 04 data CS

where the third byte contains a five bit count of the number of bytes to write,
and the data bytes are private binary data.

The host computer stores the data with a tag identifying the device which
saved the data and the sequence of writing the data. Resource Read Data
Requests are fulfilled in first in first out order.

Resource Read Data Request - resource code 05

ACCESS.bus Base Protocol Specification V3.0 2-27

Device to Host 50 XX 82 E5 05 CS

Resource Power Request - resource code 06

Device to Host 50 XX 82 E5 06 CS

This request is made by devices that have received a DPM Power Off advisory
and need additional time to complete the task they are doing, or otherwise
want to continue operation. There is no guarantee that the host computer will
grant this request to continue providing ACCESS.bus power. If the host
computer cannot grant the request it will respond with a Response Grant with
the status code set to failed.

2.1.12.4. Power Management Resource Grant command
The response provided by the Resource Grant command is unchanged for the
Resource Write Data Request, and the status byte reflects the action taken by
the host. Note that a host computer which has run out of storage it can use for
this purpose would return a status of either failed - try again later or failed.

The response provided by the Resource Grant command consists of the data
from the oldest successful Resource Data Write Request for the requesting
device. (Note that the host computer must perform the necessary mapping
between bus addresses and device identification if the assignment of bus
address to devices has changed since the Resource Data Write Request.)

Host to Device XX 50 100xxxxx F4 data CS

Where the third byte contains a five bit count of the number of bytes read, and
the data bytes are private binary data.

In the event that there are no data records available to the device, the status
will be set to failed. Data records which are not read before the second power
shutdown after the data record was written are discarded by the host.

Devices using the Resource Read Data Request to restore their internal state
should include information in the data they save which will allow them to
verify the correctness and completeness of the data they receive. Devices
which attempt to reset their state and are unsuccessful should revert to the state
they were in prior to attempting to reset their state and send an Application
Status Message to the computer from the assigned address.

The response provided by the Resource Grant command is unchanged for the
Resource Power Request, and the status byte reflects the action taken by the
host. A host computer which cannot or will not continue to provide
ACCESS.bus power will return a status of failed.

2.1.12.5. Power Management Status Message
The Application status message is used by devices to report a failure of a state
restore operation after a power down/restore sequence.

It is recommended that devices which rely on the Resource Write Data and
Read Data request to store internal state information use this message to report
failures which occur during state restorations. Device drivers which receive

2-28 ACCESS.bus Base Protocol Specification V3.0

this message may be able to reset the device, restore its state and continue with
operations.

2.1.13. Device Bandwidth Management (Optional)

2.1.13.1. Bandwidth Management Capabilities String
To put in place the foundation for software Bandwidth Management
mechanism - BWM, each ACCESS.bus device will report to the host, as part
of its capabilities string, its requirements for bus bandwidth.

Devices which support the Bandwidth Management mechanism - BWM
command shall include as a part of their capabilities string a tag bwm, and if
possible the bandwidth capabilities string specified below. The BWM
capabilities has to be immediately after the DPM (Device Power Management)
capabilities

prot()
type()
model()
pwr()

bwm({mlength(maximum nominal minimum) mwt(maximum nominal
minimum)})

bwm is the keyword for bandwidth management group of parameters.

mlength - stands for message length. The maximum, nominal, and minimum
attributes are the maximum, nominal, and minimum of the number of bytes in
the device application message. The message length includes all the message
bytes (destination and source addresses, message length, data, and checksum)
in hexadecimal.

mwt - stands for "message wait time". The mwt is the minimum waiting time
between the end of the current message, and the beginning of the next
message. This time is calculated as the following:

mwt = decimal value of (mwtH mwtL} x 100sec [seconds]

The maximum, nominal, and minimum attributes are the maximum, nominal,
and minimum values of the device wait time.

Examples:

A mouse reports

bwm({mlength(0A 0A 0A) mwt(00122 0064 005A)})

A keyboard reports

bwm({mlength(0E 05 05) mwt(2710 1388 07D0)})

When a device is connected to the bus, it will set itself to the nominal
bandwidth mode. The Bandwidth Management mechanism - BWM will get the
bandwidth attributes of all the devices, and will instruct each one of the

ACCESS.bus Base Protocol Specification V3.0 2-29

devices in which mode to stay. This decision can also be manually controlled
by the user via an ACCESS.bus control panel. The BWM will alert the user if
there are too many devices connected to the bus and will advise him to
disconnect or disable a device / devices (Enable Application Reports).

2.1.13.2. Device Bandwidth Management Command
This command is used by the host to send the device its operating bandwidth
parameters.
Host to Device

Format:

 XX 50 84 F8 YY mlength mwtH mwtL CS

Where:

F8 = Device Bandwidth Management command
YY = 00 instruction to the device to switch to the specified

bandwidth mode.
YY = 01 request to the device to report its current bandwidth

mode (Device Bandwidth Usage Reply)
mlength = Maximum message length - hexadecimal
mwtH, mwtL = Two bytes of the Maximum messages rate (messages per

second) - hexadecimal

2.1.13.3. Device Bandwidth Usage Reply
This command is used by the device to tell the host the device operating
bandwidth parameters. This command is sent to the host to acknowledge the
acceptance of Device Bandwidth Management command (YY=00), or as a
reply to host bandwidth inquiry (YY=01)

Device to Host

Format:

50 XX 84 E8 mlength mwtH mwtL CS

Where:

E8 = Device Bandwidth Usage Reply
mlength = Current message length - hexadecimal
mwtH mwtL = Two bytes of the current messages rate (messages per second) -

hexadecimal

2.1.13.4. Bandwidth Resource Request command
When a device finds that it needs more bus bandwidth (the device loses too
many messages), the device will send a BWM resource request message to
request more bus time.
Device to host:

Format:

ddddddd0
sssssss0

2-30 ACCESS.bus Base Protocol Specification V3.0

100xxxxx(P=1, length=n)
|
11100101 (E5h, Resource Request op-code)
00010000 (10h BWM resource designator)
mlength (message length)
mwtH (message rate high)
mwtL (message rate low)
|
cccccccc

2.1.13.5. Bandwidth Resource Grant command
This command is used by the host as a response to the device bandwidth
request (Bandwidth Resource Request)

Host to device

Format:

ddddddd0
sssssss0
100xxxxx(P=1, length=n)
|
11110100(F4h, Resource Grant op-code)
00010000(10h BWM resource designator)
status (0=success, 1=unsupported,

2=failed- try again later, 4=failed)
mlength (message length granted)
mwtH (message rate granted high)
mwtL (message rate granted low)
cccccccc

2.2. Fixed Address (FA) Base Protocol Subset

2.2.1. System Management devices
Version 3.0 of ACCESS.bus provides support for fixed address devices designed for
use in system management (SM devices). The ACCESS.bus host on each system must
maintain an exclusion address list to avoid conflicts between fixed and programmable
address devices. Note that some SM devices support “Master transmit” mode.

2.2.2. On-board ACCESS.bus Host Addresses
On board ACCESS.bus hosts should support both the PA ACCESS.bus host address
(Hex 50) and the SM device host address (Hex 10).

2.2.3. System Management device command support
On-board ACCESS.bus provides support for a new class of devices called System
Management devices. An example of these devices, is the Smart Battery. Section 8 of
the ACCESS.bus specification describes in detail the Smart Battery System commands.
Note that the System Management device commands should be supported by the On-
board ACCESS.bus host, but it is not necessary for a particular On-board ACCESS.bus
device to support all these command formats. It is the responsibility of the Bus
Manager to identify the appropriate protocol for accessing an SM device connected to

ACCESS.bus Base Protocol Specification V3.0 2-31

the Bus. Following is a description of the new commands included in the ACCESS.bus
Version 3.0 base protocol specification.

2.2.3.1. Quick Command
The Quick command is suitable for SM devices that have severely limited
capability.. The quick command consists of one byte and there is no further
data or response associated with it.

.

S Slave Address R/W A

From master to slave

From slave to master

S- Start condition

P- Stop condition

2.2.3.2. Send Byte
The Send Byte command allows a simple SM device to recognize its own slave
address and accept a single byte wide command.

S Slave Address W A Command A P

From master to slave

From slave to master

S- Start condition

P- Stop condition

2.2.3.3. Receive Byte
The Receive Byte command is similar to Send Byte except that the SM device
returns one byte of data rather than accepting a command.

S Slave Address R A Data Byte A P

From master to slave

From slave to master

S- Start condition

P- Stop condition

2.2.3.4. Write Byte/Word
The Write Byte/Word command allows an SM device to recognize its own
slave address and accept a one byte command followed by one or two bytes of
data.

2-32 ACCESS.bus Base Protocol Specification V3.0

S Slave Address W A Command A P

From master to slave

From slave to master

S- Start condition

P- Stop condition

Data L/H A P

2.2.3.5. Read Byte/Word
The Read Byte/Word command is similar to Write Byte/Word command
except that the SM device returns one or two bytes of data rather than
accepting data.

S Slave Address W A Command A S Slave Address R A Data L/H A P

From master to slave

From slave to master

S - Start Condition
P - Stop Condition

2.2.3.6. Process Call
Process Call command allows an SM device to process data for a particular
device function and return a value. The SM device recognizes its own slave
address and accepts a one byte command followed by data. It then returns a
value dependent on the specific command. It consists of a Write Word
followed by a Read Word without a second command or stop condition.

S Slave Address W A Command A Data L/H A

. . . . S Slave Address R A Data L/H A P

From master to slave

From slave to master

S - Start Condition
P - Stop Condition

2.2.3.7. Block Read/Write
The Block Read/Write command allows an SM device to accept or return a
block of data. The command starts with the SM device’s slave address and a
read or write condition. The SM device will either accept or provide a data
block up to 32 data bytes.

S Slave Address W A Command A Byte Count A N Bytes A P

S Slave Address W A Command A S Slave Address R A

ACCESS.bus Base Protocol Specification V3.0 2-33

Byte Count A N Bytes A P

From master to slave

From slave to master

S - Start Condition
P - Stop Condition

2.2.4. Communicating with the On-board ACCESS.bus Host
The SM devices may communicate with the On-board ACCESS.bus host using the
Write Word protocol. The SM device substitutes its slave address for the command
code followed by two bytes of SM device specific data. Following is the format of
such communications.

.
S Host Address W A Slave Addr A P

From master to slave

From slave to master

S- Start condition

P- Stop condition

Data L/H A P

Byte 1: On board ACCESS.bus SM Device Host Address
Byte 2: On-Board ACCESS.bus SM Device Address

2-34 ACCESS.bus Base Protocol Specification V3.0

Appendix A. ACCESS.bus Interface Op-codes Summary

The following table lists the ACCESS.bus Interface Op-codes, for the PA base protocol subset:

Op-code
(hex)

Function

F0 Reset
F1 Identification Request
F2 Assign Address
F3 Capabilities Request
F4 Resource Grant (optional)
F5 Enable Application Report
F6 Power Management (optional)
F7 Presence Check
F8 Device Bandwidth Management (optional)
E0 Attention
E1 Identification Reply
E2 (Reserved)
E3 Capabilities Reply
E4 (Reserved)
E5 Resource Request (optional)
E6 Power Usage Reply (optional)
E7 (Reserved)
E8 Device Bandwidth Usage Reply (optional)
C0 (reserved for vendor usage)
C1 (reserved for vendor usage)
C2 (reserved for vendor usage)
C3 (reserved for vendor usage)
C4 (reserved for vendor usage)
C5 (reserved for vendor usage)
C6 (reserved for vendor usage)
C7 (reserved for vendor usage)
C8 (reserved for vendor usage)
B1 Application Test
A0 Application Hardware Signal (optional)
A1 Application Test Reply
A2 Application Status Message

ACCESS.bus Base Protocol Specification V3.0 2-35

Appendix B. Reserved ACCESS.bus Device Addresses

The following table represents the reserved ACCESS.bus device address assignments as of August 15,
1995.

Slave Address Description Specification
0001 0000 On-board ACCESS.bus SM device host
0001 001X Smart Battery Charger¹ Smart Battery Charger Specification2

v 0.95a February 1995
0001 010X Smart Battery Selector Smart Battery Selector Specification2

v 0.9 March 1995
0001 011X Smart Battery Smart Battery Data Specification2

v 1.0 February 1995
0101 0000 General ACCESS.bus host
0110 1110 ACCESS.bus default address
1010 000X DDC2B Monitor VESA Monitor Data Channel

Specification3

Notes
1 - level 1 Smart Battery Chargers are not ACCESS.bus devices.
2 - Available from Intel Corporation 1-800-628-8686 (International 1-916-356-3551)
3 - Available from VESA

2150 North First Street, Suite 440
San Jose, CA 95131-2020
(408) 435-0333

ACCESS.bus devices are exempt from I2C royalties if they:
• Comply with the A.bus electrical specification (Off-Board or On-Board)
AND
• Incorporate the A.bus base protocol in HW or firmware. Base protocol is being defined as

either:
– The PA base protocol subset
OR
– The FA base protocol as defined for a particular device within an ACCESS.bus device

class, with the following two conditions:
• Device complies with one or more of the ACCESS.bus device class

specifications
• It responds only to one or more of the fixed addresses published by ABIG

and approved by Philips

2-36 ACCESS.bus Base Protocol Specification V3.0

Appendix C. Definitions

ACCESS.bus: Serial communication protocol allowing a computer host to communicate with external
peripherals as well as with on-board system devices.

ACCESS.bus protocol: Includes a physical layer based on the I2C serial bus developed by Philips, and
several software layers. The software layers include the base protocol, the device driver interface, and
several specific device protocols (keyboard, locator, text, battery system etc.).

Base Protocol: Defines standard messages for device communication, device initialization, device
identifications, address assignment, and a message envelope for device reports and control information.
The ACCESS.bus 3.0 base protocol consists of two subsets called PA and FA protocols.

PA Protocol: Subset of the ACCESS.bus 3.0 base protocol for Programmable Address devices

FA Protocol: Subset of the ACCESS.bus 3.0 base protocol for Fixed Address devices

On-Board: Electrical specification for ACCESS.bus 3.0 devices internal to the host computer

Off-Board: Electrical specifcation for ACCESS.bus 3.0 devices external to the host computer

Off-Board PA device: ACCESS.bus 3.0 device external to the host computer and complying with the PA
protocol (e.g. ACCESS.bus v2.1 device)

Off-Board FA device: ACCESS.bus 3.0 device external to the host computer and complying with the FA
protocol

On-Board PA device: ACCESS.bus 3.0 device internal to the host computer and complying with the PA
protocol

On-Board FA device: ACCESS.bus 3.0 device internal to the host computer and complying with the FA
protocol

System Management Device (SMD) : Synonymous with On-Board FA device

The ACCESS.bus 3.0 base protocol consists of two subsets called Programmable Address (PA) protocol
and Fixed Address (FA) protocol respectively. An ACCESS,bus device may implement either PA or FA
protocol subsets, or the complete base protocol. The same protocols apply to either On-board or Off-board
devices. Off-board devices implementing the PA protocol subset are identical to those defined in previous
versions of the ACCESS.bus specification. On-board devices implementing the FA protocol subset are
called System Management (SM) devices.

At the system level, ACCESS.bus includes several software layers. Those include the base protocol, the
device driver interface, and several specific device protocols (keyboard, locator, text, battery system etc.).
Other chapters of this specifcation define the interfaces above the base protocol layer. These interfaces are
the same regardless of which subset of the base protocol is supported at the device level.

SECTION 3

ACCESS.bus

Device Driver Interface Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group
Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

3. Introduction ... 3-1

3.1. Basic terminology ... 3-2

3.1.1. Device driver ... 3-2

3.1.2. Device capabilities... 3-2

3.1.3. Driver capabilities list.. 3-2

3.1.4. prot() .. 3-2

3.1.5. type() .. 3-2

3.1.6. model() ... 3-3

3.1.7. Device ID .. 3-3

3.1.8. Device Table ... 3-3

3.1.9. Device driver linking process... 3-3

3.1.10. Device Table entry... 3-3

3.1.11. Device status and status register... 3-3

3.2. The ACCESS.bus device driver ... 3-4

3.2.1. System configuration ... 3-4

3.2.2. Driver capabilities list.. 3-4

3.2.3. The Linking process .. 3-5

3.3. The Bus manager - Device driver interface... 3-7

3.3.1. Message Fields .. 3-7

3.3.1.1. Minor op code... 3-8

3.3.1.2. Major op code... 3-8

3.3.1.3. Device ID (DevID).. 3-8

3.3.1.4. Message Length .. 3-8

3.3.1.5. Data Bytes .. 3-8

3.3.2. Driver to Bus Manager Messages... 3-8

3.3.2.1. Reset - op code - 20h .. 3-8

3.3.2.2. Link request - op code - 21h.. 3-9

3.3.2.3. Link approval/disapproval - op code - 22h .. 3-9

3.3.2.4. Get specific device table - op code - 23h... 3-9

3.3.2.5. Get device ID string - op code - 24h.. 3-11

3.3.2.6. Get device type - op code - 25h... 3-11

3.3.2.7. Get device status - op code - 26h... 3-11

3.3.2.8. Device enable/disable - op code - 27h ... 3-11

3.3.2.9. Message to device - op code - 28h... 3-11

3.3.2.10. Driver disconnect - op code - 29h.. 3-12

3.3.2.11. Link to On-board ACCESS.bus SM or Off-board Fixed Address device - op code - 2Ah3-12

3.3.2.12. Disconnect from On-board SM or Off-board Fixed Address device - op code - 2Bh...... 3-12

3.3.2.13. Write to On-board SM or Off-board Fixed Address device - op code - 2Ch.................. 3-13

3.3.2.14. Read From On-board SM or Off-board Fixed Address device - op code - 2Dh 3-13

3.3.2.15. Free format command - op code - 2Eh .. 3-14

3.3.2.16. Read From On-board ACCESS.bus SM or Off-board Fixed Address device with Repeated

Start - op code - 2Fh .. 3-14

3.3.2.17. Disable / Enable Device Presence Check - op code - 30h .. 3-15

3.3.3. Bus manager to Driver Messages ... 3-15

3.3.3.1. Link reply op code - 40h ... 3-15

3.3.3.2. Specific device table - op code - 41h... 3-16

3.3.3.3. Device ID op code - 42h ... 3-17

3.3.3.4. Device type op code - 43h... 3-17

3.3.3.5. Device status op code - 44h... 3-17

3.3.3.6. Message from device op code - 45h .. 3-17

3.3.3.7. Device disconnect - op code - 46h... 3-18

3.4. The device driver to bus manager interface mechanism (IBM PC specific) 3-18

3.4.1. General .. 3-18

3.4.2. Driver to bus manager.. 3-18

3.4.3. Bus manager to driver - replies .. 3-20

3.4.4. Bus manager to driver - device and disconnect messages... 3-20

3.5. Message summary... 3-21

3.5.1. Driver to bus manager messages .. 3-21

ACCESS.bus Device Driver Interface V3.0 3-1

3. Introduction
One of the goals of the ACCESS.bus technology is to allow the creation of generic device drivers capable
of handling many different devices that belong to the same functional family, while simultaneously
allowing a driver to be written for a specific device which takes advantage of its unique features without
complex, hardware interface specific code. In addition, it is desirable to isolate the device drivers from the
details of managing the ACCESS.bus itself. In order to do this, ACCESS.bus systems provide a bus
manager. The bus manager controls the ACCESS.bus host interface hardware, implements the base
protocol, including device address assignment and the identification of arriving or departing bus devices;
and routes messages to and from devices and their corresponding device drivers.

The purpose of this document is to define the interface between device drivers and the ACCESS.bus bus
manager. At this time, the internal structure of bus managers is not specified. Different hardware
architectures may require different bus manager architectures.

The following schema illustrates the functional responsibility sharing between the bus manager and the
device drivers:

User's Application

Device Driver

Bus Manager Interface

1

Device Driver

Bus Manager Interface

2

Device Driver

Bus Manager Interface

X

Utility Application

Bus Manager Interface

 Bus Manager

Device Driver Interface

ACCESS.bus Interface

User's Application System Software

1 2
User's Application

Y

Device
1

Device
2

Device
3

Device
K

ACCESS.bus

Figure 3.1: Bus Manager/Device Driver Relationship

The bus manager and the device drivers communicate through shared memory buffers. Both the bus
manager and the device drivers place formatted messages in memory buffers. For Intel compatible PCs
operating in real mode, device drivers notify the bus manager of a new message via a software interrupt.
The bus manager replies to most messages from the device drivers by writing the response into the same
message buffer and then returning control to the driver. The bus manager notifies the device drivers of a
new message via a far call to the device driver.

ACCESS.bus Device Driver Interface V3.03-2

The bus manager returns a status code in the AX register for each message it receives from the device
driver.

In order to simplify the description of these transactions, we use the phrase "send a message" to describe all
of the processes used to transfer data between the device drivers and the bus manager. (See section 3.4 for
a detailed description of each of the message passing interfaces for the real mode Intel PC environment).

This approach of using messages in memory buffers is extensible to other processor execution modes, and
also to other processor types and operating systems. Of course, the details of how a memory buffer
reference is passed, and how control is passed when a new message is present, must change for each
environment.

3.1. Basic terminology
This section defines the common terminology to be used in this specification.

3.1.1. Device driver
A functional piece of software that supplies the interface between the physical device,
(through the bus manager) and an application or operating system program. The device
driver receives the operational data from the device, and transfers it to the application or
operating system in the appropriate format.

3.1.2. Device capabilities
A set of attributes that describe the functional characteristics of an ACCESS.bus
peripheral device. These attributes are encoded into a capabilities string, which consists
of a defined set of tokens and values.

3.1.3. Driver capabilities list
A hierarchical list of device prot(), type(), and model() strings which identifies the set of
devices that are supported by the specific driver.

3.1.4. prot()
The highest level definition of a device's family category. Each prot() is exclusive, and
each device belongs to at most one prot ().

Example:

prot(locator), defines the family of all devices that are used to obtain pointing input
from a user. This category includes all types of mice, digitizing tablets, trackballs,
light pens and more.

The value of prot is an ASCII character string. For the bus manager, only the first 8
characters are significant.

3.1.5. type()
The second level definition of a device's family category. Any device that does not
belong to a given type category and belongs to the same prot must be in a different type
category.

Example:

type(mouse), defines a subset of pointing devices. A digitizing tablet belongs to the
same prot category, but is not included in the type(mouse) category.

ACCESS.bus Device Driver Interface V3.0 3-3

The value of type is an ASCII character string. For the bus manager, only the first 8
characters are significant.

3.1.6. model()
The third and lowest level definition of a device's family category. Any device that does
not fall in a given model category, and which belongs to the same prot and type, must be
in a different model category.

Example:

model(3D-15L), defines a subset of mice that can handle position and motion in a
three-dimensional space.

The value of model is an ASCII character string. For the bus manager, only the first 8
characters are significant.

3.1.7. Device ID
A unique, internal ID number that is assigned to a device by the bus manager. The Device
ID is not necessarily equal to the ACCESS.bus address assigned to the same device. The
bus manager translates the ID number into the ACCESS.bus-assigned address within
outgoing messages, and translates the ACCESS.bus assigned address into the device ID
for incoming messages.

3.1.8. Device Table
The Device Table is an ACCESS.bus bus manager data structure that is available to
device drivers. The following information is included in the device table for each device
present on the bus:

• The device ID
• The device's complete Identification string
• The first eight bytes of the device's 'prot', 'type', and 'model' capabilities strings
• The device status

3.1.9. Device driver linking process
The part of the device driver that communicates with the bus manager to establish a
logical link with a physical device or devices on the ACCESS.bus. Since device drivers
may support multiple physical devices, and the devices may or may not be present when
the driver loads, the bus manager provides a mechanism for a device driver to specify the
types of devices it wants to be connected to, and also to register itself for future
connection to any devices that meet the driver's connection criteria.

3.1.10. Device Table entry
One entry in the Device table (of a specific device) that specifies the device assigned
address, the device identification string, the device capability values of prot, type and
model, and the value of the device status.

3.1.11. Device status and status register
One byte of data that indicates the device current status. The bus manager keeps this data
as part of the bus manager's Device Table.

The device status byte has the following format:

D7 D6 D5 D4 D3 D2 D1 D0

ACCESS.bus Device Driver Interface V3.03-4

not linked reserved bad non-active virtual disable 0
linked good active physical enable 1

D0 indicates whether the device is enabled or disabled. The bus manager will not transfer
messages to the driver from a device that is disabled.

A virtual device is a device that physically does not exist, but has an entry in the bus
manager Device Table and is being simulated by the bus manager or other software.
Virtual devices are useful for software testing, and to allow the simulation of
ACCESS.bus devices using non-ACCESS.bus hardware.

A non-active device is a device that has not sent any messages to the host since the last
time the bus manager checked its presence.

A bad device is a device that the host was able to assign an address to, but then could not
get its prot(), type(), and model() capabilities values, for some reason.

D7 indicates whether the device is connected (linked) to a device driver or is still free
(not linked).

3.2. The ACCESS.bus device driver

3.2.1. System configuration
The bus manager can simultaneously support any number of drivers of any category. The
set of device drivers installed, and the method through which the set of drivers is defined
and loaded, is dependent on the operating systems environment.

3.2.2. Driver capabilities list
Each device driver will normally maintain an internal list of the types of devices it
supports. Generic drivers will support any model of a given type or types of devices.
More specific drivers may support only one model or device. Normally, the generic
drivers and the device specific drivers will coexist.

For example, a user may have both a mouse and a trackball. The generic ACCESS.bus
locator driver might be used to support the mouse while a device-specific trackball driver
with enhanced features is used to support the trackball. Both drivers must coexist and
function appropriately.

In general, device drivers should provide a means to display to the user the types of
devices that the driver can support as well as the devices to which the driver has been
connected. In some cases, it may be desirable for a device driver to provide the user with
control over which devices it will connect to, thereby allowing the user to dynamically
control which peripherals are being controlled by a given driver.

Other strategies may be used in specific operating system environments to define the
binding of devices to drivers.

The special prot value "Abmon" is used to indicate to the bus manager that the device
driver is a debugger or other form of bus monitor that should be connected on a non
exclusive basis to all devices. When an Abmon driver is active copies of each device
message are sent to the driver.

ACCESS.bus Device Driver Interface V3.0 3-5

3.2.3. The Linking process
The linking process is the most complex aspect of the device driver's interface with the
bus manager. Device drivers define which devices they want to be linked to by specifying
the prot, type and model of the devices they want. The bus manager then replies with a
sequence of matching devices which the driver can choose to link to or ignore. Finally the
driver can choose to receive notification of new devices that meet its defined categories
from the bus manager when the new devices are connected to the bus.

The sequence of the linking process is as follows:

1. The device driver sends a Link request message to the bus manager in which it
declares the prot, type, and model categories of the peripheral devices it would like
to be connected to.

 The Link request message contains three 9 byte fields, one each for prot, type and

model. Only the first eight bytes of each field can be used for a string, at least one
null termination byte must be present for each string.

 The asterisk character ("*" , 02A hex) is used as a wild card to indicate any device of

that category.

 Examples (see section 3.3.1 for message structure.):

 To specify every pointing device of type mouse:

 prot(locator), type(mouse), model(*)

 db 00 ; Link request minor op code
 db 21h ; Link request major op code
 db 00 ; Device ID = 0
 db 1Bh ; Message length = 27 bytes
 db "locator",00,00
 db "mouse",00,00,00,00
 db "*",00,00,00,00,00,00,00,00
 db 29 dup(0) ; padding to a 60 byte buffer

 To specify any available device:

 prot(*), type(*), model(*)

 db 00 ; Link request minor op code
 db 21h ; Link request major op code
 db 00 ; Device ID = 0
 db 1Bh ; Message length = 27 bytes
 db "*",00,00,00,00,00,00,00,00
 db "*",00,00,00,00,00,00,00,00
 db "*",00,00,00,00,00,00,00,00
 db 29 dup(0) ; padding to a 60 byte buffer

 {On a real mode Intel PC platform; to send the message the device driver sets the DS

(segment), and DX (offset) registers to point to the message and then executes a
software interrupt 60 hex. The bus manager uses this same buffer for the Link reply.}

ACCESS.bus Device Driver Interface V3.03-6

2. The bus manager scans the Device Table for any bus devices that match the
categories specified by the device driver.

3. The bus manager replies by sending a Link reply message to the device driver in the

same memory buffer. If there is an available bus device that matches the
specifications, the reply message will contain the device's complete ID string and its
prot, type and model, and the device status.

4. The device driver responds with a Link approval/disapproval message, thereby
choosing whether or not to be linked to the device. The linkage is exclusive, with the
exception of special bus monitoring drivers which can receive a copy of each
message sent or received by a bus device. (These bus monitoring drivers are typically
used for diagnostic test or debugging purposes.). Once a device driver approves a
link with a device, the device is no longer available to any other device driver.

 If the driver chooses to approve the link, it provides the bus manager with a callback

address (a 4 byte far call address seg:offset form) which the bus manager will use to
send device events to the driver.

5. Repeat steps 1 to 4 for additional devices until the bus manager indicates that it has

reached the end of the list of devices meeting the driver's category specification

6. When the requested device does not exist in the Device Table, the bus manager sends

a Link reply with minor op code = FFh (no matching device). If the driver approves
the Link reply, the bus manager saves the request in a special pending requests list.

7. Once the link is in place, the driver can send messages to the device itself or to the

bus manager.
• The bus manager sends all the application reports of the linked devices to

the device driver.
• The driver can manage each device it is linked to separately (by their

Device IDs). It is up to the driver or its application to decide how to make
use of multiple devices.

8. When a new device is connected to the ACCESS.bus (hot plugged in), the bus

manager sends the Device Table entry (op-code 41h) to each driver with a matching
pending request. The first driver that responds with a Link approval to the message
will be connected to the new device.

Note:
The manager sends the Device Table Entry message with the same way as it sends a new
application report message (push a pointer to the link reply message buffer onto the
stack).

A typical linking protocol sequence is:

Example 1:

Driver Bus Manager
Link request

Link reply (DevID = 1)
Link approval (DevID = 1)

Link request
Link reply (DevID = 2)

ACCESS.bus Device Driver Interface V3.0 3-7

Link approval (DevID = 2)
Link request

Link reply minor op code = FFh
(no matching device)

Link approval (pending request) -

(for more details see the Link request, and Link reply message descriptions)

Example 2:

The other alternative of linking process is a connection of a new device that was
requested previously and was on a pending request list.

Driver Bus Manager
Link request

Link reply (DevID = 1)
Link approval (DevID = 1)

Link request
Link reply minor op code = FFh

(no matching device)
Link approval (pending request)

New device with matching capabilities is hot plugged in

New device table entry to driver
(op code 41h)

Link approval (new device)

3.3. The Bus manager - Device driver interface
The following protocol is used for sending messages between the bus manager and the device
driver on Intel style PCs operating in real mode.

The purpose of this protocol is to open a link from the device driver to the ACCESS.bus
peripheral device through the bus manager. The following section lists the messages and describes
each message format.

3.3.1. Message Fields
Each message starts with four header bytes, a minor op code, a major op code, the device
ID and the message length . The messages are passed between the device driver and the
bus manager in a memory buffer. Since the same buffer is used by the bus manager to
reply to most of the device driver messages, the device driver must allocate a buffer large
enough to hold the expected response. For simplicity, it is a good idea for device drivers
to allocate a single message buffer larger than is required by any message/response pair
and use the buffer for all communication with the bus manager. A buffer of 132 bytes is
sufficient to hold the largest possible message.

All message buffers should be aligned on a word boundary, and messages with odd
numbers of data bytes must pad their buffer to an even word boundary to allow the bus
manager to read the message by words.

The minor op code is located in the first byte of the message, and the major op code is
located in the second byte. The third byte of the message contains the device ID, and the

ACCESS.bus Device Driver Interface V3.03-8

fourth byte of the message contains the length of the message in bytes. The message
length is the number of data bytes, excluding the four header bytes, in the message. Note
that the buffer length is frequently longer than the message length!

The message header structure is as follows:

Byte Number Field
1 Minor op-code
2 Major op-code
3 Device ID
4 Message Length

The remainder of the message consists of data bytes.

To avoid byte ordering conflicts, the device and the device driver mutually agree on the
data byte order. For example, if a device is sending words in Motorola format, the driver
is responsible for converting it to Intel format. (The Manager transfers the data in the
same order as it is received from the bus).

3.3.1.1. Minor op code
The first byte of the message is the minor op code. Usually, this field gives more
details about the major op code.

3.3.1.2. Major op code
The second byte of the message is the major op code. Usually, this field defines
a specific control message or type of data to be transferred.

3.3.1.3. Device ID (DevID)
The third byte of the header defines the peripheral device associated with the
message.

3.3.1.4. Message Length
The fourth byte of the header indicates the number of data/control bytes to be
transmitted within this message. (Length does not include the four message
header bytes).

3.3.1.5. Data Bytes
The body of the message is contained here. Note that messages must start on
word boundaries and be in buffers which contain an even number of bytes to
allow the bus manager to access the message by word reads. Extra storage after
the end of the data bytes is ignored.

3.3.2. Driver to Bus Manager Messages

3.3.2.1. Reset - op code - 20h
Minor: 00h
Major: 20h
DevID: 00h
MsgLen: 00h

Notes: This is a special command message which resets the ACCESS.bus host
interface hardware, and as a consequence, all of the devices on the ACCESS.bus.
This command should never be issued by normal device drivers!

ACCESS.bus Device Driver Interface V3.0 3-9

3.3.2.2. Link request - op code - 21h
Minor: 00h
Major: 21h
DevID: 00h
MsgLen: 1Bh (27d)
Data: 9 bytes for the prot value (up to 8 characters + 00h)

9 bytes for the type value (up to 8 characters + 00h)
9 bytes for the model value (up to 8 characters +00h)

All the three category levels have to be defined. If the link request is not for a
specific device, the category value for model and possibly type or prot should be
set to the asterisk character which acts as a wild card value. The asterisk
character ("*", 2A hex) has to be placed in the first byte of the category value.
The other 7 bytes will be 00h .

Example 1:

prot(locator)

l o c a t o r
6C 6F 63 61 74 6F 72 00 00

type(*)

*
2A 00 00 00 00 00 00 00 00

model(*)

*
2A 00 00 00 00 00 00 00 00

Notes: The bus manager will reply with a Link reply message. Programmers
should ensure that the buffer they provide is large enough to hold the resonse
message.

3.3.2.3. Link approval/disapproval - op code - 22h
Minor: 01h Yes - connect

00h No - don't connect
Major: 22h
DevID: Device ID of the bus manager Link reply
MsgLen: 04h
Data: Callback address in 4 byte segment:offset format. This

address will be called by the bus manager with
messages at interrupt time.

3.3.2.4. Get specific device table - op code - 23h
Minor 00h
Major: 23h
DevID: device ID
MsgLen: 00h

ACCESS.bus Device Driver Interface V3.03-10

Notes: The bus manager will reply with the device table entry for the specified
device if it exists. Programmers should ensure that the buffer they provide is
large enough to hold the resonse message.

ACCESS.bus Device Driver Interface V3.0 3-11

3.3.2.5. Get device ID string - op code - 24h
Minor: 00h
Major: 24h
DevID: device ID
MsgLen: 00h

Notes: The bus manager will reply with the specific device ID string.
Programmers should ensure that the buffer they provide is large enough to hold
the resonse message.

3.3.2.6. Get device type - op code - 25h
Minor: 00h
Major: 25h
DevID: device ID
MsgLen: 00h

Notes: The bus manager will reply with the value of the prot(), type(), and
model() strings of the specified device if it exists. Programmers should ensure
that the buffer they provide is large enough to hold the resonse message.

3.3.2.7. Get device status - op code - 26h
Minor: 00h
Major: 26h
DevID: device ID
MsgLen: 00h

Notes: The bus manager will reply with the value of the device status for the
specified device if it exists. Programmers should ensure that the buffer they
provide is large enough to hold the resonse message.

3.3.2.8. Device enable/disable - op code - 27h
Minor: 00h disable

01h enable
Major: 27h
DevID: device ID
MsgLen: 00h

Notes: Upon receiving this message the bus manager will enable or disable
messages from the specific device to the device driver.

3.3.2.9. Message to device - op code - 28h
This message is used to send a message from the device driver directly to the
peripheral device. The contents of this message can be any valid ACCESS.bus
message, or any vendor or device specific message. Well-behaved drivers should
not ordinarily send Interface Part Control/Status messages to their device
because such messages may interfere with the bus manager's control of the
ACCESS.bus devices.

Minor: 00h data message
01h control message

Major: 28h
DevID: device ID

ACCESS.bus Device Driver Interface V3.03-12

MsgLen: Message length
Data: any valid ACCESS.bus or device specific message

Note: The bus manager will send this message to the selected device on the
ACCESS.bus in the correct ACCESS.bus format by adding the ACCESS.bus
headers and the checksum byte and translating the device ID into the actual bus
address.

The driver can verify that the message was transmitted successfully by checking
the status code returned by the bus manager.

3.3.2.10. Driver disconnect - op code - 29h
Before a driver terminates, it must send the above Driver disconnect message to
the bus manager. A driver that terminates without sending this message to the
bus manager will crash the system, since the bus manager will not know that the
driver's call entry point has become invalid.

Minor: 00h
Major: 29h
DevID: device ID
MsgLen: 00h

3.3.2.11. Link to On-board ACCESS.bus SM or Off-board Fixed Address
device - op code - 2Ah

Since fixed address devices do not support the ACCESS.bus initialization
protocol, we need a mechanism to install these devices in the Manager device
table. The following message is used by the driver to instruct the Manager to add
a fixed address device to the active device table:

Major: 0x2A
Minor: 0x00
MsgLen: 0x00
DevId: Odd address of On-board ACCESS.bus SM or Off-

board Fixed Address device
Data: Driver call back routine (4 bytes)

The Manager will not accept even addresses. In addition, a driver cannot link to
odd address where the even address is already used.

The reply from the Manager is:
Major: 0x49
Minor: 0x00
MsgLen: 0x00
DevId: Manager On-board ACCESS.bus SM or Off-board

Fixed Address device ID

3.3.2.12. Disconnect from On-board SM or Off-board Fixed Address device -
op code - 2Bh

The following message is used by the driver to instruct the Manager to remove a
fixed address device from the active device table:

Major: 0x2B
Minor: 0x00
MsgLen: 0x00

ACCESS.bus Device Driver Interface V3.0 3-13

DevId: Manager On-board SM or Off-board Fixed Address
device ID (from Link to On-board SM or Off-board
Fixed Address device)

3.3.2.13. Write to On-board SM or Off-board Fixed Address device - op
code - 2Ch

The following message is used by the driver to send a message to a fixed address
device. This message can be any data string that will fit the memory size of the
addressee:

Major: 0x2C
Minor: 0x00
MsgLen: Number of bytes in data field
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data: Data to On-board SM or Off-board Fixed Address
device

Example 1:

Set address 0x00 to 0x02 with "0A0B0C"

Major: 0x2C
Minor: 0x00
MsgLen: 0x04
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data: 000A0B0C (The first 00h byte is the memory address
offset.)

Example 2:

Set read offset to 0x00
Major: 0x2C
Minor: 0x00
MsgLen: 0x01
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data: 00

3.3.2.14. Read From On-board SM or Off-board Fixed Address device - op
code - 2Dh

The following message is used by the driver to read data from a fixed address
device. The message specifies the length of the data string to be read:

Major: 0x2D
Minor: 0x00
MsgLen: 0x02
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data byte 1: LSB of bytes count

ACCESS.bus Device Driver Interface V3.03-14

Data byte 2: MSB of bytes count

The reply message will be sent to the call back routine of the driver as specified
in the link process:

Major: 0x50
Minor: 0x00
MsgLen: Number of bytes in the data field
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data: Data from On-board SM or Off-board Fixed Address
device

3.3.2.15. Free format command - op code - 2Eh
The following message is used by the driver to send a message directly to the
MPD with no intervention of the Manager:

Major: 0x2E
Minor: 0x00
MsgLen: Length of the data field
DevId: 0x00
Data: any command to the MPD (no need for checksum)

3.3.2.16. Read From On-board ACCESS.bus SM or Off-board Fixed Address
device with Repeated Start - op code - 2Fh

The following message is used by the driver to read data from a fixed address
device. The message specifies the length of the data string to be read and the
memory initial address:

Major: 0x2F
Minor: 0x00
MsgLen: 0x04
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data byte 1: LSB of bytes count
Data byte 2: MSB of bytes count
Data byte 3: LSB of address offset
Data byte 4: MSB of address offset

The reply message will be sent to the call back routine of the driver as specified
in the link process:

Major: 0x50
Minor: 0x00
MsgLen: Number of bytes in the data field
DevId: Manager On-board SM or Off-board Fixed Address

device ID (from Link to On-board SM or Off-board
Fixed Address device)

Data: Data from On-board SM or Off-board Fixed Address
device

ACCESS.bus Device Driver Interface V3.0 3-15

3.3.2.17. Disable / Enable Device Presence Check - op code - 30h
The following message is used by the driver to instruct the controller to disable
or enable a specific device presence check. The Manager when receiving this
message, send a new device table to the controller with the appropriate mask (0
disable / 1 enable)

Major: 0x30
Minor: 0x00 - to disable

0x01 - to enable
MsgLen: 0x00
DevId: Manager device ID

3.3.3. Bus manager to Driver Messages

3.3.3.1. Link reply op code - 40h
As a response to Link request, the bus manager sends the following information
for each device in the device table that matches the link request specification.
After sending a message for a device, the bus manager waits for the driver to
respond with a Link approval or disapproval message for that device. For each of
the matching devices, the Minor op code is set to 00h. When the bus manager
has sent Link reply messages for each bus device that matches the link request
filter, it sends one additional Link reply message with a Minor op code of 0FFh
to indicate the end of the list of matching bus devices.

Minor: 00h for a matching device.
FFh for the end of the list of devices matching the

given set of capabilities
Major: 40h
DevID: Device ID
MsgLen: 38h (56 decimal)

This message sends the following device related data:

• The device ID
• The device complete ID string
• The device linking capabilities:

∗ 'prot'
∗ 'type'
∗ 'model'

Each one of the above capabilities strings is 8 bytes long followed by a 00h.

When the capability string value is shorter than 8 characters it is padded with
nulls.

• device status

The message format is as defined below:

Byte number Content
1 - (1 byte) Minor op code - 00 or FFh
2 - (1 byte) Major op code - 40 h
3 - (1 byte) Device ID.

ACCESS.bus Device Driver Interface V3.03-16

4 - (1 byte) Message Length 38h (56 decimal)
5 - (1 byte) protocol_revision
6 - 12 - (7 bytes) module_revision
13 - 20 - (8 bytes) vendor_name
21 - 28 - (8 bytes) module_name
29 - 32 - (4 bytes) device_number
33 - 41 - (9 bytes) Value of 'prot'
42 - 50 - (9 bytes) Value of 'type'
51 - 59 - (9 bytes) Value of 'model'
60 - (1 byte) Value of the Status register

Note: The bus manager uses the same message buffer that was used by the
driver for the Link request message (specified in DS :DX registers)

3.3.3.2. Specific device table - op code - 41h
This message is a reply to Get specific device table.

Minor: 00h
Major: 41h
DevID: Device ID
MsgLen: 38h (56 decimal)

This message sends the following device related data:

• The device ID
• The complete ID string for the device.
• The device linking portions of the device's capabilities string:

∗ 'prot'
∗ 'type'
∗ 'model'

• The device status

The message format is as defined below:

Byte number Content
1 - (1 byte) Minor op code - 00
2 - (1 byte) Major op code - 41 h
3 - (1 byte) Device ID.
4 - (1 byte) Message Length 38h (56 decimal)
5 - (1 byte) protocol_revision
6 - 12 - (7 bytes) module_revision
13 - 20 - (8 bytes) vendor_name
21 - 28 - (8 bytes) module_name
29 - 32 - (4 bytes) device_number
33 - 41 - (9 bytes) Value of 'prot'
42 - 50 - (9 bytes) Value of 'type'
51 - 59 - (9 bytes) Value of 'model'
60 - (1 byte) Value of the Status register

Note: The bus manager uses the same message buffer that was used by the
driver for the Get specific device table message (specified in DS :DX registers)

ACCESS.bus Device Driver Interface V3.0 3-17

3.3.3.3. Device ID op code - 42h
This message is sent as a reply to a Get device ID command

Minor: 00h
Major: 42h
DevID: Device ID
MsgLen: 1Ch (28d bytes)
Data: 1 byte protocol_revision

7 bytes module_revision
8 bytes vendor_name
8 bytes module_name
4 bytes device_number

Note: The bus manager uses the same message buffer that was used by the
driver for the Get device ID message (specified in DS :DX registers)

3.3.3.4. Device type op code - 43h
This message is the reply to a Get device type command.

Minor: 00h
Major: 43h
DevID: Device ID
MsgLen: 1Bh (27d bytes)
Data: 'prot' value (8 bytes + 00h)

'type' value (8 bytes + 00h)
'model' value (8 bytes + 00h)

Note: The bus manager uses the same message buffer that was used by the
driver for the Get device type message (specified in DS :DX registers)

3.3.3.5. Device status op code - 44h
This message is sent as the reply to a Get device status message. The status
register has the following format:

D7 D3 D2 D1 D0
0 not linked bad non-active virtual disable
1 linked good active physical enable

Minor: value of the status register
Major: 44h
DevID: Device ID
MsgLen: 00h

Note: The bus manager uses the same message buffer that was used by the
driver for the Get device status message (specified in DS :DX registers)

3.3.3.6. Message from device op code - 45h
This function is the primary means of communication between the device and
the corresponding device driver. The bus manager passes the message to the
driver as it is received from the device. Parsing the contents of the message is
the device driver's responsibility.

ACCESS.bus Device Driver Interface V3.03-18

The message is contained in a memory buffer which is only valid for the
duration of the call to the device driver. The driver should copy any information
it wants to access after the call to its own private storage. Since the call to the
device driver will occur at interrupt time, the device driver writer should be
aware of the limitations on resources available at interrupt time under the
operating system he or she is using.

The bus manager's protocol headers replace the first three bytes of the
ACCESS.bus message. (destination address, source address, and protocol flag +
length).

The device's bus address is translated into the internal device ID.

The message body is identical to the message on the bus (except for the
checksum byte which is removed by the bus manager).

Minor: 00h - data message
 01h - control message

Major: 45h
DevID: Device ID
MsgLen: message length
Data: The ACCESS.bus message body (without the checksum
byte).

3.3.3.7. Device disconnect - op code - 46h
This message is sent to notify a device driver that a device to which it was linked
was disconnected from the bus.

Minor: 00h
Major: 46h
DevID: device ID
MsgLen: 00h

3.4. The device driver to bus manager interface mechanism (IBM PC specific)

3.4.1. General
The device driver and the bus manager communicate by sending messages in shared
memory buffers. All bus manager to device driver messages that are replies to a driver
message (op codes: 40h, 41h, 42h, 43h, 44h) use the same memory buffer that was used
by the device driver's message. The device driver first allocates a memory buffer large
enough to hold the larger of its message or the expected reply and then calls the bus
manager by issuing a software interrupt to int 60 hex with the address of the memory
buffer in DS:DX . The bus manager's reply will be in the message buffer when control
returns to the device driver as long as the call was successful. The device driver should
check the bus manager status returned in the AX register before reading the data in the
message buffer.

All device application reports (op code 45h) and device disconnect messages (op code
46h) are sent to the driver by the bus manager in a message buffer allocated by the bus
manager. Prior to calling the device driver event entry point, the bus manager pushes a
far pointer to the message buffer onto the stack.

3.4.2. Driver to bus manager
The following describes how a device driver sends a message to the bus manager:

ACCESS.bus Device Driver Interface V3.0 3-19

1. Allocate a memory buffer large enough to hold the message and the anticipated
response. Prepare the message in the memory buffer.

2. Set DS:DX to point to the message buffer.

3. Call the bus manager (S/W interrupt - 60h)

4. Check register AX for status:

Status code (AX value) Status
0x0000 OK
0x00EE bus manager is busy - release the CPU and try

again later
0x0101 unknown op code
0x0102 unknown device ID.
0x0103 resend message
0x0104 outgoing buffer full
0x0105 message length does not match

Example assembler code for the driver's call to the bus manager:

ACCESS.bus Device Driver Interface V3.03-20

MessageBuffer:
db 00h ; minor op code
db 21h ; Link Request major op code
db 00 ; Device ID = 0
db 1Bh ; Message length = 27 bytes
db "locator",00,00
db "mouse",00,00,00,00
db "*",00,00,00,00,00,00,00,00
db 101 dup(0) ; Reserve a 132 byte buffer

CallManager:
mov dx,MessageBuffer ; form pointer to message in ds:dx
int 60h ; Call the bus manager
cmp al,00 ; Test for success
je Success

Error:
<Error handler>

Success:
mov bx,dx
mov ax,(bx) ; Read the reply message
.
. ; process the reply message
.

3.4.3. Bus manager to driver - replies
The following describes how the bus manager replies to a message from the device
driver:

1. Prepare the message in the same memory buffer provided by the device driver.

2. Load the AX register with status.

3. Return to the device driver

3.4.4. Bus manager to driver - device and disconnect messages
The following describes how the bus manager initiates a message to the device driver:

1. Allocate a memory buffer and then prepare the message in the buffer

2. Push a far pointer (segment:offset) to the message buffer onto the stack.

3. Call the device driver event handler address with a far call.

4. When it has completed processing the message, the device driver returns control to

the bus manager via a far return .

Notes: The event handler address was defined by the device driver in the Link approval
message. The device driver should return from its processing with a far return as soon as
possible. The event call will most likely occur at interrupt time, so the device driver
should only use system resources that are safe to use at interrupt time. The message

ACCESS.bus Device Driver Interface V3.0 3-21

buffer provided by the bus manager is only valid during the call to the device driver; the
driver should copy any data it wants to retain from the message buffer to its own local
storage prior to returning to the bus manager.

The device driver must ensure that its event handler address is valid at all times until it
issues a driver disconnect message to the bus manager.

Example C prototype for the driver's event handler entry point:

void far EventHandler(void far *EventBuffer)

Example assembler code for the driver's event handler entry point:

EventHandler:
push bp ; preserve registers
mov bp,sp
push es
push dx
mov es,(bp+8)
mov dx,(bp+6) ; form pointer to message in es:dx
.
.
. ; process the message
.
pop dx
pop es
pop bp
retf

3.5. Message summary

3.5.1. Driver to bus manager messages

op code Command
20h Reset
21h Link request
22h Link Approval/Disapproval
23h Get specific device table
24h Get device ID
25h Get device type
26h Get device status
27h Device enable/disable
28h Message to device
29h Driver disconnect
2Ah Link to On-board ACCESS.bus SM

device
2Bh Disconnect from On-board ACCESS.bus

SM device
2Ch Write to On-board ACCESS.bus SM

device
2Dh Read From On-board ACCESS.bus SM

device
2Eh Free Format Command

ACCESS.bus Device Driver Interface V3.03-22

2Fh Read From On-board ACCESS.bus SM
devicewith Repeated Start

30h Disable / Enable Device Presence Check

3.5.2. Bus manager to driver messages

op code Command
40h Link reply
41h Specific device table
42h Device ID.
43h Device type
44h Device status
45h Message from device
46h Device disconnect

SECTION 4

ACCESS.bus

ACCESS.bus Manager / Mini Port Driver Interface
Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

4. ACCESS.bus Software Architecture... 4-1

4.1. Mini Port Driver (MPD) .. 4-1

4.2. ACCESS.bus Manager ... 4-2

4.3. Software Device Drivers... 4-2

4.4. Application Layer... 4-2

4.5. Manager / MPD Communications - DOS .. 4-2

4.5.1. Identify - Op code 00h ... 4-2

4.5.2. Set Manager Call Back Routine - Op code 01h .. 4-3

4.5.3. Send Message - Op code 02h ... 4-3

4.5.4. Query MC - Op code 03h... 4-3

4.5.5. Poll MC - Op code 04h .. 4-4

4.5.6. Enable / Disable MC - Op code 05h... 4-4

4.5.7. Manager / MPD Communications Examples - DOS... 4-4

4.5.7.1. MPD presence check... 4-4

4.5.7.2. Incoming messages ... 4-4

4.5.7.3. Outgoing messages ... 4-5

4.5.7.4. MPD return status. .. 4-5

4.6. Manager / MPD Communications - Windows 3.1 ... 4-5

4.7. Manager to ACCESS.bus Controller Messages (through the MPD) .. 4-6

4.7.1. Initial Controller (op-code 00h) ... 4-6

4.7.2. Set Maintenance Table (op-code 02h).. 4-7

4.7.3. Set ACCESS.bus Clock Rate (op-code 03h)... 4-7

4.7.4. Set ACCESS.bus Flow Control (op-code 04h) ... 4-8

4.7.5. Set Maintenance rate (op-code 05h)... 4-8

4.7.6. ACCESS.bus Enumeration (op-code 06h) .. 4-8

4.7.7. Enable Maintenance (op-code 07h).. 4-8

4.7.8. Enable ACCESS.bus (op-code 0Bh) .. 4-9

4.7.9. Get ACCESS.bus Clock Rate (op-code 0Ch) ... 4-9

4.7.10. Get Self Test (op-code 0Dh) .. 4-9

4.7.11. Get Controller ID (op-code 0Eh).. 4-9

4.7.12. Get Maintenance Rate (op-code 0Fh)... 4-10

4.7.13. Get Maintenance Enable Status (op-code 10h) ... 4-10

4.7.14. Get H/W Status (op-code 11h) ... 4-10

4.7.15. Get ACCESS.bus Flow Control (op-code 12h)... 4-10

4.7.16. Get ACCESS.bus Enable Status (op-code 13h) .. 4-10

4.7.17. Get Controller Power Usage Status (op-code 16h).. 4-11

4.7.18. Get String from an On-board ACCESS.bus SM device or Fixed Address Device (op-code 17h)

.. 4-11

4.7.19. Get String from an On-board ACCESS.bus SM device or Off-board Fixed Address Device with

offset (op-code 19h) .. 4-11

4.7.20. Set Controller Power Management (op-code 20h) .. 4-12

4.7.21. Set Interrupt Threshold (op-code 21h).. 4-12

4.7.22. Get interrupt Threshold (op-code 22h) ... 4-12

4.7.23. Message to Device... 4-12

4.8. ACCESS.bus Controller To Manager Messages (through the MPD)....................................... 4-13

4.8.1. Error Status Occurred (op-code 80h).. 4-13

4.8.2. Device Disconnected (op-code 81h)... 4-13

4.8.3. ACCESS.bus Clock Rate Reply (op-code 82h) .. 4-13

4.8.4. Self Test Reply (op-code 83h) ... 4-14

4.8.5. Controller ID Reply (op-code 84h) .. 4-14

4.8.6. Maintenance Rate Reply (op-code 85h) ... 4-14

4.8.7. Maintenance Enable Status Reply (op-code 86h) ... 4-14

4.8.8. H/W Status Reply (op-code 87h) ... 4-15

4.8.9. ACCESS.bus Flow Control Reply (op-code 88h) ... 4-15

4.8.10. ACCESS.bus Enable Status Reply (op-code 89h)... 4-15

4.8.11. End Of ACCESS.bus Enumeration (op-code 8Ch) ... 4-15

4.8.12. String from an On-board ACCESS.bus SM device or Off-board Fixed Address Device (op-code

8Eh) .. 4-15

4.8.13. Power Usage Reply (op-code 90h) ... 4-16

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-1

4. ACCESS.bus Software Architecture
An ACCESS.bus system requires control software in the host system as well as in each peripheral device.
The host system operating software must provide interfaces by which application programs can access both
the ACCESS.bus devices and the ACCESS.bus itself. An important advantage of the ACCESS.bus
approach is that the lower levels of the interaction are common to diverse device types, so they can be
supported by the same or similar software modules.
The ACCESS.bus host software structure is described below:

ACCESS.bus Application

Device Driver 1 Device Driver 2 Device Driver N

ACCESS.bus Manager

Mini Port Driver - MPD

ACCESS.bus Host Controller

Device A Device B Device C Device M

Base Protocol Physical Layer

Figure 4-1 ACCESS.bus Software Hierarchy

4.1. Mini Port Driver (MPD)
The Mini Port Driver is a communication software layer that separates the ACCESS.bus specific
hardware from the Display Manager. The MPD is used to virtualize the specific hardware
implementation.

ACCESS.bus
Hardware

ACCESS.bus

Bus Manager

A.b Mini Port Driver - MPD

Figure 4-2. ACCESS.bus Mini Port Driver

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-2

4.2. ACCESS.bus Manager
The ACCESS.bus Manager is a central software driver that controls the operation of all
ACCESS.bus devices attached to the bus. It communicates with the MPD on one side and with the
ACCESS.bus Device Drivers on the other. The ACCESS.bus Manager initializes and controls the
ACCESS.bus, recognizing newly inserted or removed devices. It links device drivers and
applications with specific ACCESS.bus devices, validates incoming messages, and serves as a bi-
directional data switch--re-formatting and buffering incoming and outgoing messages.

4.3. Software Device Drivers
The software device drivers serve as bi-directional interface between application programs and a
specific type of device or devices (mouse driver, keyboard driver, etc.).

The appropriate driver will depend on the device type. The device Capabilities Information feature
of the ACCESS.bus protocol allows a measure of device independence in the selection of drivers
and provides a mechanism for the device to inform the host software of its characteristics.

An ACCESS.bus device driver must support the ACCESS.bus linking procedure with the Display
Manager and comply with the ACCESS.bus Device Driver Interface (DDI) protocol. (See the
ACCESS.bus specifications for more detail).

4.4. Application Layer
All application programs communicate with ACCESS.bus devices via an ACCESS.bus device
driver, or directly communicate with the ACCESS.bus Manager. ACCESS.bus applications can
use many devices of the same type (e.g. multiple mice, multiple keyboards). This feature allows
new multiple user interactive applications.

4.5. Manager / MPD Communications - DOS
The MPD and the ACCESS.bus Manager communicate by sending messages in shared memory
buffers. All MPD messages that are replies to a Manager message use the same memory buffer
that was used by the Manager message. The Manager first allocates a memory buffer large enough
to hold the larger of its message or the expected reply and then calls the MPD by issuing a
software interrupt to int 2F (hex) with the address of the memory buffer in DS:DX. The MPD’s
reply will be in the message buffer when control returns to the Manager as long as the call was
successful. The Manager should check the MPD status returned in the AX register before reading
the data in the message buffer.

The MPD chains itself to interrupt 2Fh. As a rule, all commands to the MPD should set register
AX to AB00h and BL to the desired Op code. The Manager uses the following six commands to
communicate with the MPD:

4.5.1. Identify - Op code 00h
Identifies the type of MPD and hardware. The MPD will return two numbers. The first
will be the hardware type and the second the MPD version. This command can also be
used to test if MPD exists.

Input:
AX = AB00h
BL = 00h

Output:
AH = Hardware type
AL = MPD version
BX = Vendor specific

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-3

CX = Vendor specific
DX = Vendor specific

4.5.2. Set Manager Call Back Routine - Op code 01h
In order to get ACCESS.bus input, the manager supplies a single call back address as its
service routine. This routine is called by the MPD for each input message. The C format
of such routine is:

callback(unsigned char far *buf, int msgLen);

Note that the call back routine is invoked under the MPD's context (i.e. the Manager
cannot rely on its data segment). The call back routine must load DS with DGROUP prior
to any access to local variables. The MPD will provide a stack of approximately 512
bytes.

Input :
AX = AB00h
BL = 01h
ES:DX = Address of Call Back Routine

Output :
AX = 0 or Error Code

4.5.3. Send Message - Op code 02h
This service will send either ACCESS.bus messages or control instructions to the MC
(Micro-Controller) that do not require a reply. The Manager provides a memory buffer
address, number of bytes and number of retries.

Input :
AX = AB00h
BL = 02h
BH = Message Length
CX = Number of retries (must be greater or equal to 1)
DS:DX = Message address

Output :
AX = 0 or Error Code

4.5.4. Query MC - Op code 03h
A service to send a query to the MC. The Manager provides a memory buffer containing
the query and the size of the outgoing query. The MC reply is read back into the provided
memory block. The Manager must ensure that the memory block is large enough to hold
the MC reply. A 131 bytes long buffer will satisfy all queries.

Input :
AX = AB00h
BL = 03h
BH = Message Length
DS:DX = Message address (must be large enough to hold reply)

Output :
AX = 0 or Error Code
BX = Length of reply
The reply is read into the memory buffer defined by DS:DX

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-4

4.5.5. Poll MC - Op code 04h
This service reads the next pending message. If the input FIFO contains a message it is
read into the provided memory buffer. If not, the MPD will poll the MC for a short period
of time. If a message arrives while doing so, it is read into the provided memory buffer.
Otherwise, an error code is returned. The memory buffer must be large enough to hold
any input message. A 131 bytes long block will satisfy that requirement.

Input:
AX = AB00h
BL = 04h
DS:DX = Memory buffer to hold input message (minimum 131 bytes)

Output:
AX = 0 or Error Code
BX = Message Length
The input message (if any) is read into the memory buffer DS:DX

4.5.6. Enable / Disable MC - Op code 05h
The Manager can hold the MPD from dispatching incoming messages. The MPD keeps a
counter for locking input dispatching. The MPD start with value of 1 (disabled). Each
enable command decrements the counter. Each disable command increments the counter.
The counter must be zero for messages to be dispatched.

Input:
AX = AB00h
BL = 05h
CX = 0 => disable (increment) , non zero => enable (decrement)

Output:
AX = 0 or Error Code

4.5.7. Manager / MPD Communications Examples - DOS
The first task of the MPD is to perform the necessary initialization sequence required by
the hardware (controller), so that the controller will be able to communicate with the
Manager. The following is a step by step description of the Manager to MPD
communication protocol:

4.5.7.1. MPD presence check
1. Manager sets register AX to AB00h (MPD pre-defined identifier)
2. Manager calls MPD via the pre-defined software interrupt
3. Manager checks register AX for return status. If the return value is still

AB00h the MPD is not present.

4.5.7.2. Incoming messages
The MPD is activated by a hardware interrupt generated by the controller
(AB_IRQ). The MPD receives the incoming message from the controller via a
lower level handshake protocol. The MPD reformats the incoming message,
allocates a memory buffer and then prepares the message in the buffer.

• Push a far pointer (segment:offset) to the message buffer onto the stack.
• Call the Manager’s event handler address with a far call.
• When it has completed processing the message, the Manager returns control

to the MPD via a far return .

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-5

Notes:
The event handler address was defined by the Manager in the MPD initialization
message. The Manager should return from its processing with a far return as
soon as possible. The event call will most likely occur at interrupt time so the
Manager should only use system resources that are safe to use at interrupt time.
The message buffer provided by the MPD is only valid during the call to the
Manager, the Manager should copy any data it wants to retain from the message
buffer to its own local storage prior to returning to the MPD.

4.5.7.3. Outgoing messages
The following describes how the Manager sends a message to the MPD:

1. The Manager allocates a memory buffer large enough to hold the message
and the anticipated response and prepares the message in the memory
buffer.

2. Set DS:DX to point to the message buffer.
3. Manager sets register AX to AB00h (MPD pre-defined identifier)
4. Call the bus MPD via the pre-defined S/W interrupt
5. Check register AX for status.

4.5.7.4. MPD return status.
Each of MPD services returns status in register AX. Depending on service in use,
the return value could be one of the following:

Status code (AX value) Initiator Status
0x0000 MPD OK
0x0001 Controller byte transmitted to the bus is not acknowledged
0x0002 Controller reserved
0x0003 Controller arbitration lost while sending message to the bus
0x0004 Controller ACCESS.bus incoming buffer full
Status code (AX value) Initiator Status
0x0005 Controller ACCESS.bus message failure
0x0006 Controller unknown OpCode of internal message to controller
0x0007 - 0x000F Controller reserved
0x0010 MPD ACCESS.bus hardware not found
0x0011 MPD controller didn’t acknowledge interrupt
0x0012 MPD time out while writing message to the controller
0x0013 MPD time out while reading message from the controller
0x0014 MPD communication error is not acknowledged by the

controller
0x0015 MPD controller didn’t reply on query
0x0016 - 0x001F MPD reserved

4.6. Manager / MPD Communications - Windows 3.1
The two previous paragraphs describe the DOS interface between the Manager and the MPD.
Under WINDOWS 3.1, the MPD DLL, instead of chaining to interrupt 0x2F, exports all the
services listed in 1.2 to be called by the Manager DLL. Export ordinals for those services should
be 1 to 6.

Example of exporting services (in Windows definition (.def) file for winmpd.dll) :

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-6

EXPORTS
McID @1
McSetCallBack @2
McWrite @3
McQuery @4
McRead @5
McEnable @6

All of these services should have the same names as listed above and should provide the same set
of input and output parameters as their DOS equivalents (excluding MPD ID and MPD OpCode as
the input parameters).

Examples of services definition (C notation) :
int far pascal McID(void);
void far pascal McSetCallBack(void far pascal (*CALLBACK)(unsigned char far

*buf, int msgLen));
int far pascal McWrite(unsigned char far * buf, int msgLen, int retry);
int far pascal McQuery(unsigned char far * buf, int far * msgLen);
int far pascal McRead(unsigned char far * buf, int far * msgLen);
void far pascal McEnable(int enable);

The name of the MPD module for WINDOWS has to be winmpd.dll .

4.7. Manager to ACCESS.bus Controller Messages (through the MPD)
Using the Manager to MPD protocol described above, the Manager can communicate with the
ACCESS.bus Controller. The Manager can send to the ACCESS.bus Controller messages
addressed to specific devices on the bus or internal messages intended for the ACCESS.bus
Controller itself. To send a message to a specific device on the ACCESS.bus, the Manager uses
the Manager to MPD protocol to pass a message with a destination address matching the specific
ACCESS.bus device address (with the source address 50h). To send an internal message to the
ACCESS.bus Controller, the Manager uses the same Manager to MPD services, but this time both
the source and the destination address are 50h.

The following are all internal messages between the Manager and the ACCESS.bus Controller.
Each Internal message should have a value in the Message Length field (the 3rd byte), which is a
logical OR of 80 hex and n, where n is the number of bytes in the message excluding four
(destination address, source address, message length and checksum).

When sending the message to the ACCESS.bus Controller, the MPD may re-format the message
to better fit it to the ACCESS.bus Controller’s instructions set and internal structure.

4.7.1. Initial Controller (op-code 00h)
This message is used to perform a complete h/w initialization. This command is used
usually at system initialization, or following a system failure.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 00h
Data: 55h (to prevent unintended init message)

cs

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-7

4.7.2. Set Maintenance Table (op-code 02h)
The Manager updates the Controller internal abbreviated device table which is used to
perform the maintenance process. This table is compressed such that each device is
represented by one bit. The Controller data byte represents the highest device address to
be checked.

Destination: 50h
Source: 50h
MsgLen: MsgLen
OpCode: 02h
Data: 1 byte with the highest device address
Data: 0 up to 17 bytes of the following structure:

Byte# D7 D6 D5 D4 D3 D2 D1 D0

1 The Highest Access.bus device address on the bus

2

17

00h02h04h06h08h0Ah0Ch0Eh

F2hFEh FCh FAh F8h F6h F4h

:
:
:
:
:
:
:

F0h

A bit value of "1" in each one of the device addresses indicates the existence of a device
on the bus. This addressee needs to be checked by the Controller. A value of "0"
indicates that there is no device at this address. Usually the message will have less than
17 bytes.

Example:

There are 3 devices on the bus with addresses 02h, 04h, and 08h. The message will be as
follows:

OpCode: 01h
Data: 08h 08h is the highest bus address
Data: 16h 16h = 00010110 is the mapping of the devices

addresses 02h, 04h, and 08h

Note: The MPD has to divide the value of the highest bus address by 16 to find the
number of bytes that follow the first data byte.

4.7.3. Set ACCESS.bus Clock Rate (op-code 03h)
This function call instructs the controller to change the ACCESS.bus clock rate.

Destination: 50h
Source: 50h
MsgLen: 83h
OpCode: 03h

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-8

Data: 2 successive bytes that indicate the clock rate in Kbit/sec
cs

Example:

To set a clock rate of 100Kbit/sec the data is:

0000 0000 0110 0100 = 100d

4.7.4. Set ACCESS.bus Flow Control (op-code 04h)
This function call instructs the controller to block or unblock all incoming messages by
turning off and on the incoming flow control. In our case, the flow control is the
ACCESS.bus acknowledge bit. When the ACK bit is turned off (the host is not
acknowledging any of the devices messages) there will be no incoming messages.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 04h
Data: 00h to block incoming messages

01h to unblock incoming messages
cs

4.7.5. Set Maintenance rate (op-code 05h)
This function call sets the elapse time between two successive ACCESS.bus presence
checks. The rate is the desired time in units of 2msec. This function call re-activates the
maintenance process.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 05h
Data: 1 byte that indicates the time in 2msec units.

cs

4.7.6. ACCESS.bus Enumeration (op-code 06h)
This function call instructs the Controller to complete one round of presence check
beginning with the first device address.

Note: Prior to this function call the Manager has to disable the regular maintenance.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 06h

cs

Note: The controller reports End of ACCESS.bus Enumeration at the end of the
enumeration cycle.

4.7.7. Enable Maintenance (op-code 07h)
Instruct the Controller to halt or resume the maintenance procedure.

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-9

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 07h
Data: 00 - disable maintenance

01 - enable maintenance
cs

4.7.8. Enable ACCESS.bus (op-code 0Bh)
This function call instructs the controller to enable the ACCESS.bus channel.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 0Bh
Data: 00h - disable ACCESS.bus

01h - enable ACCESS.bus
cs

4.7.9. Get ACCESS.bus Clock Rate (op-code 0Ch)
This function call retrieves the current ACCESS.bus clock rate.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 0Ch

cs

Return Value:
The MPD replies on the same message buffer with - ACCESS.bus Clock Rate
Reply

4.7.10. Get Self Test (op-code 0Dh)
This function call retrieves the Controller self test results.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 0Dh

cs

Return Value:
The MPD replies on the same message buffer with - Self Test Reply

4.7.11. Get Controller ID (op-code 0Eh)
This function call retrieves the Controller ID string.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 0Eh

cs

Return Value:

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-10

The MPD replies on the same message buffer with - Controller ID Reply

4.7.12. Get Maintenance Rate (op-code 0Fh)
This function call retrieves the current maintenance rate.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 0Fh

cs
Return Value:

The MPD replies on the same message buffer with - Maintenance Rate Reply

4.7.13. Get Maintenance Enable Status (op-code 10h)
This function call retrieves the current maintenance status (enable / disable).

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 10h

cs

Return Value:
The MPD replies on the same message buffer with - Maintenance Enable Status
Reply

4.7.14. Get H/W Status (op-code 11h)
This function call retrieves the controller H/W status.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 11h

cs

Return Value:
The MPD replies on the same message buffer with - H/W Status Reply

4.7.15. Get ACCESS.bus Flow Control (op-code 12h)
This function call retrieves the current incoming flow control status (on / off).

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 12h

cs
Return Value:

The MPD replies on the same message buffer with - ACCESS.bus Flow Control
Reply

4.7.16. Get ACCESS.bus Enable Status (op-code 13h)
This function call retrieves the current ACCESS.bus enable status (enable / disable).

Destination: 50h

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-11

Source: 50h
MsgLen: 81h
OpCode: 13h

cs

Return Value:
The MPD replies on the same message buffer with - ACCESS.bus Enable Status
Reply

4.7.17. Get Controller Power Usage Status (op-code 16h)
This function call retrieves the current controller power usage status.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 16h

cs

Return Value:
The MPD replies on the same message buffer with - Power Usage Reply

4.7.18. Get String from an On-board ACCESS.bus SM device or Fixed Address
Device (op-code 17h)

This function call instructs the controller to retrieve a string from an On-Board
ACCESS.bus SM device at a specified address (e.g. DDC/2B memory device).

Destination: 50h
Source: 50h
MsgLen: 84h
OpCode: 17h
Data: 1 byte with the device address
Data: 2 bytes with the data string length

cs
Note: The response will come as an ordinary incoming message from an ACCESS.bus
device

4.7.19. Get String from an On-board ACCESS.bus SM device or Off-board Fixed
Address Device with offset (op-code 19h)

This function call instructs the controller to extract a string from an On-board
ACCESS.bus SM device or an Off-board device at a specified fixed address (e.g.
DDC/2B memory device). The controller first sets the device offset by sending the offset
to the even address (Master write), and then it puts a repeated Start and reads the string
form the odd address (Master receive) according to the string length that is specified in
the message.

Destination: 50h
Source: 50h
MsgLen: MsgLen
OpCode: 19h
Data: 1 byte with the device odd address
Data: 2 bytes with the data string length (LSB first)
Data: 2 bytes with the address offset (LSB first)

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-12

4.7.20. Set Controller Power Management (op-code 20h)
This function call instructs the controller to change to the specified power mode.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 20h
Data: 1 byte with controller power mode according to the following

format:

A.b Power D7 Power Mode D3 D2 D1 D0
On 1 Run 0 0 0 0
Off 0 Standby 0 0 0 1

Suspend 0 0 1 0
Shutdown 0 0 1 1
Restart 0 1 0 0
Power off advisory 0 1 0 1
Query power 0 1 1 0

cs

D4 to D6 are don’t care.

4.7.21. Set Interrupt Threshold (op-code 21h)
This message sets the number of message bytes that the controller receives from the bus
from the beginning of a new ACCESS.bus message before its interrupt the Manager.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 21h
Data: 1 byte that indicates the number of bytes before interrupting

the host.
cs

4.7.22. Get interrupt Threshold (op-code 22h)
This message requests the value of the controller current interrupt threshold.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 22h

cs

4.7.23. Message to Device
This function call is used to send an ACCESS.bus message to a device.
The message format is the exact ACCESS.bus message that is sent to the bus.
Example: (Capabilities Request)

Destination: 02h
Source: 50h
MsgLen: 83h
Data: F30000

cs

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-13

4.8. ACCESS.bus Controller To Manager Messages (through the MPD)
Using the Manager to MPD protocol described in chapter 1 above, the ACCESS.bus Controller
can communicate with the Manager. The ACCESS.bus Controller can send to the Manager
messages from specific devices on the bus or internal messages originated by the ACCESS.bus
Controller itself. When a message is from a specific device on the ACCESS.bus, the ACCESS.bus
Controller uses the Manager to MPD protocol to pass a message (to destination address 50h) with
the source address matching the specific ACCESS.bus device address. To send an internal
message to the Manager, the ACCESS.bus Controller uses the same Manager to MPD services,
but this time both the source address and the destination address are 50h.

In these cases the MPD has to re-format the ACCESS.bus Controller messages to meet the
specification before it sends the message to the Manager. In some cases the ACCESS.bus
Controller message format may be optimized to the specific controller’s instructions set and
internal structure, and the message format does not meet the MPD to Manager specification.

The following are all internal messages between the ACCESS.bus Controller and the Manager.
Each Internal message should have a value in the Message Length field (the 3rd byte), which is a
logical OR of 80 hex and n, where n is the number of bytes in the message excluding four
(destination address, source address, message length and checksum).

4.8.1. Error Status Occurred (op-code 80h)
This function call is used to report bus errors that where detected by the controller.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 80h
Data: 1 byte with error status with the following format:

D7 D6 D5 D4 D3 D2 D1 D0
R R R R R R R bus sttuck low for more than 20 ms

4.8.2. Device Disconnected (op-code 81h)
This function call is used to acknowledge the Manager that a device dropped off the
ACCESS.bus. A device that does not acknowledge the Device presence check after three
attempts is declared as disconnected.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 81h
Data: 1 byte with the device ACCESS.bus address.

4.8.3. ACCESS.bus Clock Rate Reply (op-code 82h)
This function call is a response to Get ACCESS.bus Clock Rate inquiry. The Data
consists of two bytes that the Manager sent to the controller. These two bytes indicates
the clock rate in Kbit bits per second.

Destination: 50h
Source: 50h
MsgLen: 83h
OpCode: 82h

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-14

Data: 2 bytes that indicate the clock rate in Kbit/sec.

4.8.4. Self Test Reply (op-code 83h)
This function call informs the Manager about the ACCESS.bus hardware sanity status.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 83h
Data: 1 byte with the following format:

D7 D6 D5 D4 D3 D2 D1 D0
R R R R A.b Power Functional Registers ROM Check-sum RAM

Pass Pass Pass Pass 0
Fail Fail Fail Fail 1

R - Reserved

4.8.5. Controller ID Reply (op-code 84h)
This function call is a reply to Get Controller ID. The controller sends its ID string to the
Manager.

Destination: 50h
Source: 50h
MsgLen: 9Ah
OpCode: 84h
Data: The controller ID string format is as the following:

ACCESS.bus protocol revision: 1 byte ("B")
Micro code revision: 8 bytes ("V1.3.1 ")
Micro code vendor name: 8 bytes ("CATC ")
Micro code date : 8 bytes ("01/22/94")

4.8.6. Maintenance Rate Reply (op-code 85h)
This function call is a reply to Get Maintenance Rate inquiry.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 85h
Data: One byte which holds the rate in 2ms units.

4.8.7. Maintenance Enable Status Reply (op-code 86h)
This function call is a reply to Get Maintenance Enable Status inquiry.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 86h
Data: 00 - maintenance disabled

01 - maintenance enabled

ACCESS.bus Manager/Mini Port Driver Interface Specification V3.0 4-15

4.8.8. H/W Status Reply (op-code 87h)
This function call is a reply to Get H/W Status inquiry.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 87h
Data: 1 byte with the following format:

D7 D6 D5 D4 D3 D2 D1 D0
R R R Host /

Device
DDC1
monitor

A.b device/s Standard
mouse

Standard
keyboard

Host None None None None 0
Device Present Present Present Present 1

R - Reserved

4.8.9. ACCESS.bus Flow Control Reply (op-code 88h)
This function call is a reply to Get Flow Control Status inquiry.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 88h
Data: 00h incoming messages are blocked

01h incoming messages are enabled

4.8.10. ACCESS.bus Enable Status Reply (op-code 89h)
This function call is a reply to Get ACCESS.bus Enable Status inquiry.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 89h
Data: 00h - ACCESS.bus disabled

01h - ACCESS.bus enabled

4.8.11. End Of ACCESS.bus Enumeration (op-code 8Ch)
This function call indicates that the Controller completed one round of maintenance from
start to finish. This is a response to Set ACCESS.bus Enumeration initiated by the
Manager.

Destination: 50h
Source: 50h
MsgLen: 81h
OpCode: 8Ch

4.8.12. String from an On-board ACCESS.bus SM device or Off-board Fixed
Address Device (op-code 8Eh)

This function call is used to send the retrieved data string from an On-board ACCESS.bus
SM device or an Off-board Fixed Address device to the Manager.

ACCESS.bus Manager / Mini Port Driver Interface Specification V3.04-16

Destination: 50h
Source: 50h
MsgLen: MsgLen
OpCode: 8Eh
Data: 1 byte with the device address
Data: 2 bytes with the data string length
Data: The data string.

4.8.13. Power Usage Reply (op-code 90h)
With this function call the MPD returns the controller current power mode.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 90h
Data: 1 byte with the controller current power mode according to the

following format:

A.b Power D7 Power Mode D3 D2 D1 D0
On 1 Run 0 0 0 0
Off 0 Standby 0 0 0 1

Suspend 0 0 1 0
Shutdown 0 0 1 1
Restart 0 1 0 0
Power off advisory 0 1 0 1
Query power 0 1 1 0

D4 to D6 are don’t care.

4.8.14. Interrupt Threshold Reply (op-code 91h)
This message returns the controller’s current value of the interrupt threshold.

Destination: 50h
Source: 50h
MsgLen: 82h
OpCode: 91h
Data: 1 byte that indicates current interrupt threshold.

4.8.15. Message from a Device
This function call is used to send an ACCESS.bus message that comes from a device to
the Manager.
The message format is the exact ACCESS.bus message that is received from the bus.

Example: (Device Attention message)

Destination: 50h
Source: 6Eh
MsgLen: 81h
Data: E0

SECTION 5

ACCESS.bus

Keyboard Device Protocol Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

5. Introduction ... 5-1

5.1. Design Objectives.. 5-1

5.2. Generic Keyboard Overview.. 5-1

5.3. Key Event Reporting .. 5-1

5.4. Auto Repeat .. 5-2

5.5. Key click and Bell ... 5-2

5.6. Capabilities Information .. 5-2

5.7. Timing and Exceptions (Guideline) ... 5-3

5.8. Host Commands to Keyboard .. 5-4

5.8.1. Application Click (Optional).. 5-4

5.8.2. Application Bell (Optional) ... 5-4

5.8.3. Application LEDs .. 5-4

5.8.4. Application Poll... 5-4

5.9. Keyboard To Host Data.. 5-4

5.9.1. Keyboard State Report (Device Data Stream) .. 5-4

5.9.2. Keyboard Output Error .. 5-5

5.9.3. Keyboard Startup... 5-5

5.9.4. Keyboard Self-Test report.. 5-5

5.9.5. Keyboard Capabilities Change notification .. 5-6

5.10. Keyboard Mapping Tables... 5-6

5.10.1. Keyboard Mapping .. 5-6

5.10.2. PC Keyboard Mapping... 5-6

APPENDIX 5.A ... 5-7

Language Mapping ... 5-7

APPENDIX 5.B.. 5-8

Key Maps 5-8

APPENDIX 5.C.. 5-11

PC 101/102 Keyboard Design ... 5-11

APPENDIX 5.D ... 5-14

Example of the ISO/EDUC 9995 Key Positions............................ 5-14

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-1

5. Introduction

5.1. Design Objectives
The keyboard device protocol described in this specification defines standard messages for
reporting keystrokes and controlling keyboard peripherals. The keyboard device protocol attempts
to define the simplest set of functions from which common industry standard keyboard interfaces
can be built. The following principles were used to guide the design:

1. Provide sufficient functional completeness to support existing user interfaces.

2. Reduce complexity in human terms wherever possible. Existing keyboard drivers do not

utilize many of the features provided. Some have introduced errors in handling the subtle
interactions defined.

3. Minimize state information that must be modeled in both the keyboard and the host. This is to

avoid synchronization problems.

4. Minimize memory required in the keyboard. Cost per bit is much lower on the host.

5. Minimize per unit cost for hardware and firmware while allowing high function alternatives.

6. Provide standard Key Code for office keyboards so that they can use standard drivers. Other

keyboards can provide alternate tables with the standard drivers or replace the drivers
altogether

5.2. Generic Keyboard Overview
A generic keyboard consists of an array of key stations assigned numbers (Key codes)
between 8 and 255 (08 - FF). When any key station transitions between open and closed,
the entire list of Key Codes for key stations currently closed or depressed is transmitted to
the host.

In addition to reporting key stations, the generic keyboard device can support simple
feedback mechanisms such as key clicks, bells, and light-emitting diodes. These
mechanisms are controlled explicitly from the host so that minimal keyboard state
modeling is required. The capabilities information is used to identify the keyboard
mapping table and the feedback mechanisms available. The keyboard mapping and
language configuration can also be stored in the keyboard itself as part of the capabilities
string.

5.3. Key Event Reporting
Each key is assigned a unique 8-bit number (8-255). The first eight (8) codes are reserved for
other keyboard functions. On each key transition, up or down, the keyboard will report the
complete state of the key array as a list of zero to ten key stations that are currently down.

Example: user enters the modified keystroke Alt-Shift-A

transition report
Alt down Alt
Shift down Alt Shift
`A' down Alt Shift A
`A' up Alt Shift

ACCESS.bus Keyboard Protocol Specification V3.05-2

Shift up Alt
Alt up <empty list> (see 5.7.1)

This reporting scheme is functionally complete in that the host can detect every key transition and
it provides the full state of the keyboard on each report. No special re synchronization reports are
needed.

To simplify generating the reports, keys can be reported in any order.

5.4. Auto Repeat
Auto-repeat is the responsibility of the host. The common model is to have appropriate keys begin
auto-repeating at a constant <rate> if held down for longer than some start up <delay>. The auto-
repeat <rate> and <delay> are often user setable.

5.5. Key click and Bell
Key click is handled manually by the host sending the command to click after each appropriate
key transition or auto repeated keystroke. In order for key click to appear instantaneous, key click
should occur within 100 milliseconds of the corresponding key transition. The key click volume is
specified by the host on each command so there is no state to set or remember in the keyboard.

Bell is handled manually by the host sending the command to sound the bell as needed. The bell
volume is specified by the host on each command so there is no state to set or remember in the
keyboard.

5.6. Capabilities Information
The keywords defined in this section have standard meanings within the ACCESS.bus Generic
Keyboard Device Protocol.

Keyword Meaning

prev() The "prev()" value are two bytes that indicate the current ACCESS.bus
protocol revision, and the current device specific protocol revision. The
current prev value for keyboards is BA- prev(BA) - B is the base
protocol revision and A is the current keyboards protocol revision.

keymap() The "keymap()" entry identifies what platform/layout a keyboard is
configured for. The primary usage will be to define the keys available
on the current keyboard as a subset of those on the master table. This
feature allows a single keyboard driver to support multiple platforms
and multiple keyboard designs for each platform.

A second usage would allow the system to substitute other key codes
from the master list to convert some or all of those stored and sent by
the keyboard, This feature provides the user flexibility through
remapping and improved emulation.

The keymap() parameter will also define special key combinations that
control functions such as reset, pause, attention and reboot.

lang() The "lang()" entry identifies keyboard language. The keyboard will
indicate to the system driver the language/country for which it is
configured. The system ACCESS.bus driver will then substitute the

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-3

appropriate characters for those keys which undergo language/country
specific changes.

The key used for a period or comma on the numeric keypad should be
determined by keymap(). Whether it generates a comma or period
should be determined by the operating system, locale settings. However
if the system does not have locale settings, lang() may be used.

The lang() parameter will also control language specific keyboard
functions such as but not limited to:

Dead key tables
Treat Caps Lock as Shift Lock
Toggle or latch Shift Lock
Use Shift-Alt instead of Ctrl-Alt
Alt-gr use

feedback() The "feedback()" entry lists and describes the feedback mechanisms
available for use by host software.

click() The "click()" entry indicates the keyboard provides a host controlled
click feature. The parenthesis contain an integer representing the
maximum volume setting. Zero is assumed to be the minimum.

bell() The "bell()" entry indicates the keyboard provides a host controlled bell
feature. The parenthesis contain an integer representing the maximum
volume setting. Zero is assumed to be minimum.

pitch() The "pitch()" entry indicates the keyboard provides a host controlled
bell pitch control feature. The parenthesis contain an integer
representing the maximum pitch range setting. Drivers with no user
interface to control pitch should use the median value. Zero is the
lowest pitch supported.

led() The "led()" entry indicates the keyboard provides 1 to 16 host
controlled LED indicators. The parenthesis contain a list of tagged
labels giving the bit switch number in the illumination mask and
corresponding indicator label or name. The following labels are
currently defined: Other labels are reserved for future assignment.

hold, com (compose), wait, num (num lock),
cap (caps lock/shift lock), scr (scroll lock)

Warning - Bits switches are numbered from 1 (Least Significant Bit) to 16 (most
Significant Bit). This is different from normal bit numbering.

5.7. Timing and Exceptions (Guideline)
The keyboard microprocessor scans the key array repeatedly to detect key transitions. If more than
one key transition is detected during a single scan, all key transitions will be reported together as
part of the new keyboard state. In this case, the order of key transitions cannot be determined.

When the microprocessor completes a scan of the key array and has detected one or more key
transitions, it will try to assume bus mastership to send a keyboard report. Since other devices may

ACCESS.bus Keyboard Protocol Specification V3.05-4

be using the bus, it could take some time before the keyboard is allowed to become bus master.
The processor may restart scanning the key array during this time, and wait to be interrupted when
bus mastership has been granted.

It is assumed devices attached to the ACCESS.bus will have an opportunity to report during every
20 milliseconds.

5.8. Host Commands to Keyboard

5.8.1. Application Click (Optional)
The Application Click command instructs the keyboard to generate a click sound (device
defined Control/Status, P=1).

Op-code: 01
Data: l-byte click volume

5.8.2. Application Bell (Optional)
The Application Bell command instructs the keyboard to generate a bell sound (device
defined Control Status, P=l).

Op-code: 02
Data: l-byte bell volume
Data: l-byte bell pitch

5.8.3. Application LEDs
The Application LEDs command instructs the keyboard to illuminate one or more LED
indicators (device defined Control/Status, P=1).

Format:

Op-code: 03
Data: 2-byte illumination mask: 0=off, 1=on

Note: bits are defined in LED capabilities. See 2.6.2.2

5.8.4. Application Poll
The Application Poll command instructs the keyboard to report its current state showing
which keys are currently down (device defined Control/Status, P=1). See Keyboard State
Report.

Op-code: 04
Data: none

5.9. Keyboard To Host Data

5.9.1. Keyboard State Report (Device Data Stream)
The keyboard State Report transmits a list of up to ten key codes (8-255) for the keys that
are currently down. Code value zero (0) means the key list is empty, no keys are down.

0101000 (50 = Host Dest addr)
ddddddd Device Address
00000001 (P=0, Length = 1)
00000000 No keys down

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-5

cccccccc Check Sum

5.9.2. Keyboard Output Error
The Keyboard Output Error message indicates that the keyboard has detected a key state
it cannot report. This might occur because more than ten keys are being held down
simultaneously or a possible phantom key has been detected. The keyboard will transmit
a valid key state report as soon as the condition preventing the key state from being sent
is corrected. Keyboard Output Error is a device defined Control/Status message.

Keyboard Output Error should be reported using the uniform Application Status Message
(op code = A200). Although other devices use vendor dependent error reporting, all
keyboards will use the following standard error reporting to allow the use of a common
device driver.

The error report message would be:

0101000 (50 = Host Dest addr)
ddddddd Device Address
10000101 P=1, Length = 5)
10100010 A2 op code
00000000 Secondary op code
00000110 (06 = Error Occurred)
000000pt p=1 if phantom key error (bit 1)

t=1 if too many keys depressed (bit 0) (LSB)
00000000 Second error byte
cccccccc Check Sum

5.9.3. Keyboard Startup
At device power up, or upon receiving a "Reset" command, the keyboard will set its
device address to the ACCESS.bus default address (6E) and test its electronics and
firmware and will report its presence with an "Attention" report (see ACCESS.bus
Description and Protocol Specification).

Start up guidelines:

If a ROM or RAM error is detected, the keyboard may attempt to start normal
operation anyway.

If a key down error is detected, the keyboard will send the attention message. It
will flag the key down condition when the driver asks for the self-test results and
then resume scanning the key array until all keys are up. It will then use the
Applications Status Message to report 'device ready'.

5.9.4. Keyboard Self-Test report
The keyboard will report its self-test results using the Application Test Reply message
(op code A1). The first Application Test (op code B1) after startup will signal the
keyboard to send its startup self test results in the following format:

00 Successful Self-Test
01 ROM checksum error detected
02 RAM error detected
03 Key down error detected

ACCESS.bus Keyboard Protocol Specification V3.05-6

The ROM error will be followed by the computed 16 bit checksum and Key down error
will be followed by the key code for the first key detected, respectively.

Multiple errors can be combined in the same test report.

5.9.5. Keyboard Capabilities Change notification
Keyboard capability changes must be signaled with the Applications Status Message
Command (op code A200). In response to the new host request for capabilities the
keyboard will return a new capability set that will completely replace the previous set.

This feature will usually be used to change lang() for a multilingual keyboard or
keymap() for a user programmable keyboard.

5.10. Keyboard Mapping Tables

5.10.1. Keyboard Mapping
This standard will establish standard mapping for Key Codes since it is not practical for
every keyboard manufacturer to provide keyboard mapping tables for every country
variation of every language for every operating system. Once a Key Code is assigned it
will not change in all future standards. This standard will set Key Code to character or
function relationships. Key positioning information is not part of the standard and is
only provided as a guide.

Mapping is controlled by two capability parameters, keymap() and lang(). Keymap
identified the platform specific layout of the keyboard. For example keymap(EPC)
identifies the keyboard as being a 101/102 Extended PC keyboard. Keymap(SUN5)
identifies it as a type 5 Sun keyboard and a keymap(LK501) is a DEC keyboard layout.

The Lang() mapping is consistent across platforms but may vary by country or locale.
French keyboards in France typically use the AZERTY layout regardless of platform. The
lang() mapping tables will be provided with the operating system specific keyboard
driver. The operating system will usually allow the user to override lang() to allow users
to type in languages not supported by the keyboard hardware. This will allow users to put
stickers on the key caps without reprogramming or reoptioning the keyboard. Usually the
user will allow the keyboard to designate the language so that they can use either smart
multi-lingual keyboards or different language specific keyboards. If no lang() is specified
or if it does not match any language supported by the operating system then the default
will be US English. (See Appendix 5D)

5.10.2. PC Keyboard Mapping
Because of the large number of PC keyboards, Appendix 5.C shows the standard Key
Codes in a format specific to US English PC 101 keyboards.

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-7

APPENDIX 5.A

Language Mapping
Currently the only language defined is US English which is the default if no lang() parameter is
supplied.

Table 5A.1 Language Table

Note that the shifted 6 is a caret '^' on an ASCII system and a not sign '¬' on an EBCDIC system
with a standard US language layout.

Key Code LANG() Typical
Position

OE `~ E00
16 1! E01
1E 2@ E02
26 3# E03
25 4$ E04
2E 5% E05
36 6^ E06
3D 7& E07
3E 8* E08
46 9(E09
45 0) E10
4E -_ E11
55 =+ E12
5D \| E13
15 Q D01
1D W D02
24 E D03
2D R D04
2C T D05
35 Y D06
3C U D07
43 I D08
44 O D09
4D P D10
54 [{ D11
5B]} D12
5C \| D13

ACCESS.bus Keyboard Protocol Specification V3.05-8

APPENDIX 5.B

Key Maps

This is the standard key mapping for Key Codes of normal office systems keyboards. Normally
only a subset of these codes are implemented. Each platform has different requirements. Cross
platform mixes of keyboards and systems will require KEYMAPS() to invoke special remapping
so that the keyboard will support a minimal set of required functions of the system. Table 5B.1 is
to be used as a guide line. Developers can deviate from this table in two ways:

1. They can move keys to other positions on the keyboard and move the key codes to the new
position. The advantage is that they can use standard keymaps.

2. Key functions can be moved to other locations using the key codes at those new locations.

New keymaps must be used but this technique save having to redo the internal key mapping
within that keyboard controller

The following table provides a suggested starting point to maintain commonalty between
hardware and devices driver designs. The typical positions are for reference purposes only.

Table 5B.1 Standard Key Code Mapping

Typical
Position

Key Code KEYMAP(EPC)
PC 101/102

IBM 101
Position

Other Functions

E14 66 Backspace 15
D00 0D Tab 16
C99 AF Ctrl
C00 58 Lock 30
C13 5A Return 43
B99 12 Left Shift 44
B12 59 Right Shift 57
A99 14 Left Ctrl 58 Ctrl
A00 B1 Left Compose/Alt
A01 11 Left Alt 60 Left Diamond
A10 91 Right Alt/AltGr 62 AltGr
A11 AD Right Compose
A12 94 Right Ctrl 64 Right Ctrl
E31 F0 Insert 75 Find/PA1
E32 EC Home 80 Insert/Page Up
E33 FD Page Up 85 Page Down/Remove
D31 F1 Delete 76 End/Select
D32 E9 End 81 Insert/Prev
D33 FA Page Down 86 Delete/Next
C31 82
C32 85 Up Arrow
C33 84
B31 86 Left Arrow
B32 F5 Up Arrow 83
B33 87 Right Arrow

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-9

Typical
Position

Key Code KEYMAP(EPC)
PC 101/102

IBM 101
Position

Other Functions

A31 E5 Left Arrow 79
A32 F2 Down Arrow 84
A33 F4 Right Arrow 89
E51 77 Num Lock 90 Esc
E52 CA KP / 95
E53 7C KP * 100
E54 7B KP - 105
D51 6C KP 7 91
D52 75 KP 8 96
D53 7D KP 9 101
D54 79 KP + 106
C51 6B KP 4 92
C52 73 KP 5 97
C53 74 KP 6 102
C54 65 107
B51 69 KP 1 93
B52 72 KP 2 98
B53 7A KP 3 103
B54 DA KP Enter 108
A51 6D 94 KP 0
A52 70 KP 0 99 KP 00
A53 71 KP . or , 104 KP 000
A54 DC 109
L99 76 Esc 110
L01 17 F1 112
L02 18 F2 113
L03 19 F3 114
L04 0C F4 115
L05 1F F5 116
L06 0B F6 117
L07 83 F7 118
L08 0A F8 119
L09 20 F9 120
L10 09 F10 121
L11 78 F11 122
L12 27 F12 123
L13 0F F13
L14 10 F14
L31 92 Print Screen 124 Help
L32 7E Scroll Lock 125
L33 95 Pause 126 Pause
L51 28 Mute
L52 2F Vol -
L53 30 Vol +
L54 37 Power
K01 38 F13
K02 39 F14

ACCESS.bus Keyboard Protocol Specification V3.05-10

Typical
Position

Key Code KEYMAP(EPC)
PC 101/102

IBM 101
Position

Other Functions

K03 3F F15
K04 40 F16
K05 47 F17
K06 48 F18
K07 4F F19
K08 50 F20
K09 51 F21
K10 56 F22
K11 57 F23
K12 5E F24
E79 5F Attn/SysReq/Stop
E80 60 Clear/Again
D79 63 CrSel/Props
D80 68 Undo
C79 6A ExSel/Front
C80 6E ErEOF
B79 6F Oper
B80 7F Copy
A79 80 Find
A80 81 Out
L79 88
L80 89 Help

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-11

APPENDIX 5.C

PC 101/102 Keyboard Design
This appendix describes an example ACCESS.bus keyboard implementation and should not be
viewed as specifying any conformance requirements.

5.C.1 PC 101 Capabilities Information Example

prot(keyb)
model(PC101)
type(keyboard)
keymap(EPC)
feedback(click(15)bell(15)led(2(scr)3(cap)4(num)))

lang() defaults to US English, Click and bell volumes can range for 0 to 15.

The LED control byte for standard PC keyboards:
Bitswitch 1 Not Used (Least Significant Bit)
Bitswitch 2 Scroll Lock
Bitswitch 3 Caps Lock
Bitswitch 4 Num Lock
Bitswitch 5-16 Not Used

58 60

85 90 95

106

108

110 126125124

79 84 89 94 99 104

83 93 98 103

92 97 102

91 96 101

100 105

76 81 86

80751 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 43

44 46 47 48 49 50 51 52 53 54 55 57

6461 62

112 113 114 115 116 117 118 119 120 121 122 123

Figure 5C.1 PC 101 key keyboard Key Numbers

Table 5C.1: Key Codes as applied to an Extended PC keyboard.

Key Number Key Code LANG() KEYMAP(EPC) Position
1 0E `~ E00
2 16 1! E01
3 1E 2@ E02
4 26 3# E03
5 25 4$ E04
6 2E 5% E05
7 36 6^ E06
8 3D 7& E07

ACCESS.bus Keyboard Protocol Specification V3.05-12

Key Number Key Code LANG() KEYMAP(EPC) Position
9 3E 8* E08
10 46 9(E09
11 45 0) E10
12 4E -_ E11
13 55 =+ E12
14 5D \| E13
15 66 Backspace E14
16 0D Tab D00
17 15 Q D01
18 1D W D02
19 24 E D03
20 2D R D04
21 2C T D05
22 35 Y D06
23 3C U D07
24 43 I D08
25 44 O D09
26 4D P D10
27 54 [{ D11
28 5B]} D12
29 5C \| D13
30 58 Caps Lock C00
31 1C A C01
32 1B S C02
33 23 D C03
34 2B F C04
35 34 G C05
36 33 H C06
37 3B J C07
38 42 K C08
39 4B L C09
40 4C ;: C10
41 52 '" C11
42 53 \| C12
43 5A Return C13
44 12 Left Shift B99
45 61 Reserved B00
46 1A Z B01
47 22 X B02
48 21 C B03
49 2A V B04
50 32 B B05
51 31 N B06
52 3A M B07
53 41 ,< B08
54 49 .> B09

ACCESS.bus Keyboard Device Protocol Specification V3.0 5-13

Key Number Key Code LANG() KEYMAP(EPC) Position
55 4A /? B10
56 62 Reserved B11
57 59 Right Shift B12
58 14 Left Ctrl A99
60 11 Left Alt A01
61 29 Space A05
62 91 Right Alt A10
64 94 Right Ctrl A12
65 67 Reserved A02
66 64 Reserved A08
67 13 Reserved A09
75 F0 Insert E31
76 F1 Delete D31
77 82 Reserved C31
78 86 Reserved B31
79 E5 Left Arrow A31
80 EC Home E32
81 E9 End D32
82 85 Reserved C32
83 F5 Up Arrow B32
84 F2 Down Arrow A32
85 FD Page Up E33
86 FA Page Down D33
87 84 Reserved C33
88 87 Reserved B33
89 F4 Right Arrow A33
90 77 Num Lock E51
91 6C KP 7 D51
92 6B KP 4 C51
93 69 KP 1 B51
94 6D Reserved A51
95 CA KP / E52
96 75 KP 8 D52
97 73 KP 5 C52
98 72 KP 2 B52
99 70 KP 0 A52
100 7C KP * E53
101 7D KP 9 D53
102 74 KP 6 C53
103 7A KP 3 B53
104 71 KP . or , A53
105 7B KP - E54
106 79 KP + D54
107 65 Reservede C54
108 DA HP Enter B54
109 DC Reserved A54

ACCESS.bus Keyboard Protocol Specification V3.05-14

Key Number Key Code LANG() KEYMAP(EPC) Position
110 76 Esc L99
112 17 F1 L01
113 18 F2 L02
114 19 F3 L03
115 0C F4 L04
116 1F F5 L05
117 0B F6 L06
118 83 F7 L07
119 0A F8 L08
120 20 F9 L09
121 09 F10 L10
122 78 F11 L11
123 27 F12 L12
124 92 Print Screen L31
125 7E Scroll Lock L32
126 95 Pause L33

Some key numbers do not have keys caps on a standard PC 101 keyboard, but they may have
switches that are wired into the matrix even if they can not be used. The Key Codes are provided
because they may be used in other configurations. These key numbers and the corresponding Key
Codes are marked as "Reserved" in either the LANG() or KEYMAP() columns.

APPENDIX 5.D

Example of the ISO/EDUC 9995 Key Positions
The ISO/EUC 9995 standard is a universal standard that identifies key positions using a coordinate
system. Other vendor specific systems are often incomplete and require special accompanying
diagrams. Columns 78 and 80 are on the left-hand side of the keyboard. These position identifiers
are only used for reference purposes only. Actual key positioning is up to the keyboard
implementer.

L99 L02 L04 L06 L08 L10 L12

E01 E03 E05 E07 E09 E11 E13

D00 D02 D04 D06 D08 D10 D12

C00 C02 C04 C06 C08 C10 C12

B99 B01 B03 B05 B07 B09 B11

A99 A02 A12A09

L31 L33

E32

D31 D33

E51 E53

D51 D53

C51 C53

B51 B53

A51 A53

K01 K03 K05 K07 K09 K11

B33B32

A31

Figure 5.d1: Example of some ISO/EUC 9995 Key positions

SECTION 6

ACCESS.bus

Locator Device Protocol Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

6. Introduction ... 6-1

6.1. Design Objectives.. 6-1

6.2. Overview of Generic Locator... 6-1

6.3. Locator Event Reports ... 6-1

6.4. Capabilities Information .. 6-2

6.5. Locator Conventions... 6-4

6.6. Timing and Exceptions ... 6-4

6.7. Locator Messages and Commands... 6-4

6.7.1. Locator Report (Device Data Stream) .. 6-4

6.7.2. Application Set Sampling Interval ... 6-5

6.7.3. Application Poll... 6-5

6.7.4. Locator Self Test Report.. 6-5

ACCESS.bus Locator Device Protocol Specification V3.0 6-1

6. Introduction

6.1. Design Objectives
The locator device protocol described in this specification defines standard messages for reporting
locator movement and key switch activation as needed for mice, tablets, and other basic positioning
devices. The protocol is designed to accommodate a range of basic locator devices such as a mouse
or tablet. More complex devices can be modeled as a combination of basic devices or can provide
their own device driver, thus minimizing the burden on the protocol.

6.2. Overview of Generic Locator
A generic locator consists of one or more dimensions described by numeric values and, optionally,
a small number of key switches. The standard driver requires the locator device to identify the type
of data it will report from a small list of options and adjusts to handle this data type. These options
are:

• Number of dimensions, e.g., 2-D, for a mouse or a tablet

• Dimension type: absolute, i.e., referenced to some fixed origin, like a tablet; or relative, i.e.,

change since last report, like a mouse

• Resolution in divisions per unit, e.g., counts per inch or counts per revolution

• Dynamic range of values that can be reported, i.e., the minimum and maximum values

• Number of key switches, from 0 to 15

The assignment of scalar-value dimensions returned from one or more devices to the user interface
functions is left to the application. However, to accommodate most conventions, the scalar
dimensions and the key switches can be labeled in the capabilities string.

6.3. Locator Event Reports

Locator reports are generated in response to a poll command, or at each sampling interval in which
a change in position or button state has been detected. The sampling interval defaults to twelve
milliseconds (12ms) (83Hz update), but is setable from the host.

Locator event reports include the current button state and the current position or movement since
the last report. For simplicity, these are coded as a sequence of two byte integers. The first integer
contains the state of up to sixteen (16) locator key switches. The remaining integers represent
locator dimensions. Locator event reports are transmitted using the device data stream message
(see ACCESS.bus Description and Protocol Specification).

Example:

A 2D mouse might report:

50h computer address
54h device address
06h data stream, data length 6
000lh button "Bl" is down
0017h X movement is 17 units
FFF4h Y movement is -12 units

ACCESS.bus Locator Device Protocol Specification V3.06-2

xx message checksum

6.4. Capabilities Information

The keywords defined in this section have standard meanings within the ACCESS.bus Generic
Locator Device Protocol.

Keyword Meaning

prev() The "prev()" value are two bytes that indicate the current ACCESS.bus
revision, and the current device specific protocol revision. The current

prev value for locator is BA- prev(BA) - B is the base protocol revision and A is
the current locator protocol revision.

type() The Òtype()" entry is intended to identify the device type to the user in a
recognizable form. type() is a user's view of a device. That is, a joystick, mouse,
or whatever. It is also a second level identifier of the device used by the system
software.

type(mouse) Mouse
type(digitizer) Digitizing tablet
type(tball) Trackball
type(ptrstick) Force activated joystick (typically embedded in keyboards)
type(touchscn) Touchscreen
type(dial) Dials, arrays of dials, and other single axis valuators
type(swpad) Switch pads, such as those used for game control, where a set of switches are

used to control position and functions. (as opposed to keyboard)
buttons() The "buttons()" entry lists and describes the key switches that are reported to host

software. The parenthesis contain a list of tagged labels giving the bit number in
the keyswitch word or name.

L Left mouse button.
R Right mouse button.
M Middle mouse button.
Bl B2 B3 B4 Numbered locator buttons.
Tip Stylus tip button.
Barrel Stylus barrel button.
P Sensor in proximity indicator.

dim() The "dim()" entry gives the number of dimensions reported by a locator device.

d0() . . .dn() The "d0()", "dl()", . . . , "dn()" entry groups' attributes that apply to a single
dimension. Capability attributes within the parenthesis apply only to that
dimension. Capability attributes outside a "dn()" entry apply to all dimensions
reported by the device.

rel The "rel" attribute identifies dimensions that report relative
coordinates, i.e., change since last report, like a mouse.

abs The "abs" attribute identifies dimensions that report absolute
coordinates, i.e., referenced to some fixed origin, like a tablet.

ACCESS.bus Locator Device Protocol Specification V3.0 6-3

res() The "res()" entry describes the resolution of one or more locator dimensions. The
parenthesis contain an integer number and unit. The number represents the
number of movement increments reported for a change of one unit.

inch Counts per inch.
cm Counts per centimeter.
rev Counts per revolution.

range() The "range()" entry describes the range of values that can be reported for one or
more dimensions. The parenthesis contain two integer numbers corresponding to
the minimum and maximum values that can be reported.

dname() The "dname()" entry specifies a label or name for a dimensions.

X X dimension
Y Y dimension
Z Z dimension
RX Rotation about X axis
RY Rotation about Y axis
RZ Rotation about Z axis
PN Pressure Normal to the sensing surface
PT Pressure Tangent to the sensing surface, typically the squeeze pressure on a pen

barrel.

Consider the following example locator device capabilities string:

 (
 prot(locator)
 type(mouse)
 model(VSXXX)
 buttons(l(L)2(R)3(M)) dim(2) rel res(200 inch) range(-127 127)
 d0(dname(X))
 dl(dname(Y))
)

"prot(locator)" tells host software that this device is a generic locator and follows the locator
device protocol.

"type(mouse)" provides a user recognizable description of the type of locator device.

"model(VSXXX)" is a user readable identification of the device model.

"buttons(l(L)2(R)3(M))" describes the device as having 3 key switches or buttons labeled "L"
(left), "R" (right), and "M" (middle). The corresponding bits in the key switch word are also
identified.

"dim(2)" describes the device as a two dimensional locator.

"rel res(200 inch) range(-127 127)" are characteristics of the device that apply to all of its
dimensions since they are not enclosed within a single dimension tag. In this case, each dimension
reports relative movement with resolution of 200 counts per inch. The reported movements can
range from -127 to +127.

ACCESS.bus Locator Device Protocol Specification V3.06-4

The dimension tag "d0()" indicates characteristics that apply to a single dimension only. The
"dname(X)" tag names dimension "d0" as "X".

6.5. Locator Conventions
The following conventions are recommended for devices used to input 2D or 3D spatial
information:

1. Position coordinates are reported in order: X positive from left-to-right; Y positive from down-
to-up; Z positive out of the screen (toward the operator viewpoint).

2. Rotations are reported in order around the X, Y, and Z axis using a "right hand" coordinate

system.

3. Key switches are reported as bits in a 16 bit key switch word (l=depressed or on) and should be

labeled in the Capabilities String. The following default assignments are recommended (Bit 1
= LSB).

Table 6.1: Recommended Default Bit Assignment in Locator Key Switch

Bit-numbered (label) Description
1(L) Left mouse button
2(R) Right mouse button
3(M) Middle mouse button
1(B1) 2(B2) 3(B3) 4(B4) Button 1-4
1(Tip) Stylus tip button
2(Barrel) Stylus barrel button
15 Sensor in proximity

4. Dials are reported in order from left to right and top to bottom, with increasing values
corresponding to clockwise rotation. Obviously, not all devices will fit these conventions.
These recommendations are intended to simplify interchanging common locator devices such
as mice, tablets, trackballs, joysticks, touch screens, and dial boxes.

6.6. Timing and Exceptions
If a dimension reporting relative movement overflows within a single reporting interval, the
maximum value should be reported.

6.7. Locator Messages and Commands

6.7.1. Locator Report (Device Data Stream)
The Locator Report message reports the current locator position or movement, and key
switch state.

Format:

ddddddd0
sssssss0
000xxxxx (P=0, length=4-34)
locator button state (16-bit keyswitch word)
|
one to 16 scalar (each value is a 16-bit
dimension values signed integer)

ACCESS.bus Locator Device Protocol Specification V3.0 6-5

|
cccccccc

6.7.2. Application Set Sampling Interval
The Set Sampling Interval command sets the locator sampling interval from 1 to 255
milliseconds (3.92 to 1000 reports/second). A parameter value of zero selects polled
operation, that is no unsolicited reports. Devices may not be able to set their interval to the
exact value requested by the host. Devices should set their interval to the closest value
possible that is less than or equal to the requested interval. As a design guide, devices will
typically only be requested to set their sampling interval in the range of 8 to 25
milliseconds (40 to 120 reports/second). Set Sampling Interval is a device defined
control/status message:

Op-code: 01 Data: l-byte number of milliseconds.

6.7.3. Application Poll
The Application Poll command instructs the locator to report its current state as a Locator
Event Report. The Locator Event Report includes the current movement or position and
status of any locator buttons.

Op-code: 02 Data: none.

6.7.4. Locator Self Test Report
Upon receiving an Application Test command, the locator will test its electronics and
firmware and report the results as an Application Test Reply report (see ACCESS.bus
Description and Protocol Specification). The locator uses the following status values in its
Attention report:

0 Success
1 ROM checksum error detected
2 RAM error detected
3 Sensing or hardware error detected
4 Sensing device or cursor out of proximity
5 Other error

If a ROM checksum error is detected, the second data byte will give the computed non-
zero checksum.

SECTION 7

ACCESS.bus

Monitor Device Protocol Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C
specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

7. Introduction... 7-1

7.1. Design Objectives ... 7-1

7.2. Monitor Device Overview .. 7-1

7.2.1. Monitor Conventions... 7-2

7.2.2. Language support .. 7-2

7.2.3. Control of Specification .. 7-2

7.3. Base Protocol -- Interface Part .. 7-2

7.3.1. Reset ... 7-3

7.3.2. Attention ... 7-3

7.3.3. Identification... 7-3

7.3.4. Assign Address.. 7-4

7.3.5. Capabilities Information.. 7-4

7.3.5.1. EDID Capability string ... 7-5

7.3.5.2. VDIF Capability string ... 7-5

7.3.5.3. CMDS Capability String... 7-5

7.3.5.4. VCP Capabilities string .. 7-5

7.3.5.5. VCP Name Capabilities string .. 7-6

7.3.5.6. Enable Application Report.. 7-7

7.3.5.7. Resource Allocation (Optional) .. 7-7

7.3.5.8. Vender Reserved Op codes (Optional) .. 7-7

7.3.5.9. Device Power Management (Optional) ... 7-8

7.3.5.10. Device Bandwidth Management (Optional) .. 7-8

7.4. Base Protocol -- Application Part .. 7-8

7.4.1. Application Hardware Signal (Optional).. 7-8

7.4.2. Application Test Report .. 7-8

7.4.3. Application Status Message... 7-9

7.5. Monitor Device Messages and Commands .. 7-9

7.5.1. Get VCP Feature ... 7-9

7.5.2. VCP Feature Reply.. 7-9

7.5.3. Set VCP Feature.. 7-11

7.5.4. Get User Control Key Mode .. 7-11

7.5.5. User Control Key Reply .. 7-11

7.5.6. Set User control Key Mode ... 7-12

7.5.7. Get Timing Report .. 7-13

7.5.8. Get Key Report ... 7-13

7.5.9. Reset VCP Feature .. 7-13

7.5.10. Disable VCP Feature ... 7-14

7.5.11. Enable VCP Feature .. 7-14

7.5.12. Save Current Settings .. 7-15

7.5.13. Vender Reserved Op-codes.. 7-15

7.6. Monitor Device Data Stream Messages... 7-15

7.6.1. Timing Report ... 7-15

7.6.2. Key State Report ... 7-16

Appendix 7A...7-17

Op Code Summary ..7-17

Appendix 7B...7-22

Design Considerations...7-22

Monitor Host Detection ...7-22

ACCESS.bus Host Monitor Detection -Host Boot Time7-23

ACCESS.bus Host Monitor Detection -Hot Monitor Attach...........7-24

Monitor Isolation...7-24

DC Loading 7-24

Multiple Monitor Support..7-24

ACCESS.bus Monitor Device Protocol Specification V3.0 7-1

7. Introduction

7.1. Design Objectives
The monitor device protocol described in this section defines standard messages for controlling
display devices such as CRT and LCD flat panel monitors. For these devices ACCESS.bus does
not transfer the information being displayed, but instead, is used to manage and control the
device. Devices such as the alphanumeric displays used in point of sale terminals where the
information to be displayed in transferred by the ACCESS.bus are handled in a separate protocol.

7.2. Monitor Device Overview
Display devices typically include a number of user controls to set brightness, contrast, picture
size, position, and color balance. In addition, displays frequently have a number of internal
settings that are changed to optimize operation with different video display formats. It is
desirable for the computer system to be able to control these settings directly, as well as to be able
to read from the monitor its timing characteristics. Historically, monitors have provided
hardware control panels to accomplish these adjustments. Using the computer to replace these
manual controls increases user convenience. Finally, CRT monitors consume large amounts of
power, and it is desirable for the computer system to be able to manage the monitor's power
consumption when the computer is not in use.

The ACCESS.bus provides an excellent means for meeting these needs, and additionally the
monitor provides a convenient spot for a user to connect other ACCESS.bus peripherals. By
using the monitor as a connection point for peripherals the user can dramatically reduce cable
clutter.

VESA, the Video Electronics Standards Association has developed two methods of host to
monitor communication, DDC1/2B and DDC1/2AB. DDC1/2B (Monitor Data Channel) provides
a simple point to point interface where the Computer system is always the master and the
monitor is a slave. DDC2B uses the Philips I2C protocol to allow a computer system to read data
from a memory device located in the monitor. This provides a very low cost method for the
monitor to transmit its capability data to the host system. DDC1/2B monitors store basic monitor
information in a 128 byte data structure. This allows the host to read the standard timing modes
provided by the display. This is a read back scheme. The host computer cannot send control
commands to the monitor when in the DDC1 mode of operation.

DDC1/2AB, is a superset of DDC1/2B. Monitors that implement DDC1/2AB are full featured
ACCESS.bus devices. This allows the host to read VDIF (VESA Video Display Information
Format) and remotely control monitor functions. VDIF contains extensive addition information
about monitor characteristics.

The ACCESS.bus Monitor Device Protocol provides the device specific protocol to support
DDC1/2AB compliant monitors in an ACCESS.bus host system. Support for VESA DDC1/2B
type monitors is outside the scope of this specification. Appendix B gives system designers
guidelines for supporting DDC1/2B devices in ACCESS.bus systems, since Plug and Play PCs
will potentially have to operate with both DDC1/2B and DDC1/2AB monitors (and even various
other monitor types). This chapter also provides additional information on how DDC monitor
devices will interact with the ACCESS.bus since the monitors also must operate in an
environment where some hosts are using ACCESS.bus (DDC1/2AB), others are using an I2C
port only to read the monitor's DDC1/2B data, and other hosts are expecting the monitor to clock
data out on Vertical sync transitions (DDC1). Thus both the monitor and the host can operate in
one of several different configurations, and each is determining the system configuration
dynamically.

ACCESS.bus Monitor Device Protocol Specification V3.07-2

7.2.1. Monitor Conventions
Monitor adjustments are relative, not absolute. Due to analog variations, support of
multiple resolutions, and refresh rates it is not possible to issue a monitor command that
moves the image "Right 2mm." Monitor commands are in terms of full scale. For
example, if the monitor allows 10 bits of Vertical position adjustment the host may
select any one of 1024 positions. However, it has no way of knowing exactly where the
monitor will position the image. This is not a limitation since the commands will
normally be issued interactively in response to input from a user who is observing the
monitor.

7.2.2. Language support
This version of the specification does not include support for unicode and country codes.
First generation adopters are encouraged to use the standard feature set. This places
language support into the host driver. Future versions of this specification will support
multiple country selections and the unicode character set.

7.2.3. Control of Specification
The Monitor Device Protocol is the result of collaboration between the Video Electronics
Standards Association and the ACCESS.bus Industry Group. VESA controls the
Monitor Data Channel specification, including the Extended Display Identification
(EDID) data structure, and the VESA Display Information Format (VDIF)
specifications. ACCESS.bus Industry Group (ABIG) controls the Monitor Device
Protocol.

Questions and input regarding the VESA portions of this specification should be
directed to:

VESA
2150 North First Street, Suite 440
San Jose, CA 95131-2020
Voice: 408-435-0333
Fax: 408-435-8225
E-mail: America On-line KEYWORD VESA

7.3. Base Protocol -- Interface Part
ACCESS.bus commands are divided into base and application specific portions. Base level
commands are used to manage common ACCESS.bus features such as address assignment,
capability strings, and power management. Application specific commands are unique to the
particular device.

The Base protocol is additionally subdivided into Interface and Application portions. The
interface portion implements the ACCESS.bus commands required to configure the device. The
Application portion is responsible for transferring device information to the Host. For example,
setting the monitor's bus address is an interface function, while returning control key information
is in the Application section.

Due to the requirement placed upon monitors that they operate both as ACCESS.bus devices and
as DDC1/2B devices extra information is included in this standard on the way in which monitor
devices respond to certain base protocol commands.

ACCESS.bus Monitor Device Protocol Specification V3.0 7-3

7.3.1. Reset
The Reset message has a slightly different meaning to Monitor Protocol devices.
Monitor devices must support two different communication schemes, ACCESS.bus
(VESA DDC1/2AB) and emulation of a slave only I2C memory device (VESA
DDC1/2B). At power up the monitor defaults to DDC1/2B mode. In this mode, when it
detects activity on SCL, it emulates an I2C slave memory device at address A0/A1h. In
addition to this, ACCESS.bus compatible monitors also decode the host's reset to
address 6Eh and use this information to switch from DDC1/2B emulation to DDC1/2AB
operation and move to the ACCESS.bus default address for new devices, (6Eh) and
signal its presence with an Attention message.

Once the monitor detects a valid ACCESS.bus Reset message it becomes a fully
compliant ACCESS.bus device. The monitor stays in ACCESS.bus mode as long as
power to the monitor is maintained. Cycling power causes the monitor to go to its power
up default mode (VESA DDC1/2B). The host must output a Reset message at address
6Eh to switch the monitor back to the ACCESS.bus mode.

7.3.2. Attention
The monitor sends the host an Attention message whenever it detects that it is connected
to an ACCESS.bus host. Before transmitting this message the monitor sets its device
address to the ACCESS.bus power up default (6Eh). If the host acknowledges each byte
of the Attention message the monitor stays in ACCESS.bus mode.

7.3.3. Identification
The identification phase is used by the host to separately select each device prior to
assigning it a unique address. During the identification phase devices return information
that uniquely identifies them to the host so that the host can assign addresses to the
devices on the bus.

Device to Host:

50 XX 9D E1 42 56 32 2E 30 20 20 20 41 42 43 20 20 20 20 20 58 58 58 20 20 20 20 20 10 E8
F3 56 CS

Where:
50 Host device address
XX Monitor device address
9D Length byte (P =1, Length = 29)

PL = 10LLLLLL where LLLLLL = from 000010 to 100000

E1 ID reply op code
42 Base Protocol Revision "B"
56...20 7 byte Vender Module protocol revision "V 2.0"
41...20 8 byte Vender name "ABC"
58...20 8 byte Module name "XXX"
10...56 32 bit device number
CS Checksum

Device numbers may be either random or fixed serial numbers. Serial numbers allow
multiple occurrences of like devices to be identified, and are useful for systems with
multiple identical monitor monitors.

ACCESS.bus Monitor Device Protocol Specification V3.07-4

7.3.4. Assign Address
The Host issues an Assign address command to move the monitor from its ACCESS.bus
default address (6Eh). The Monitor uses the new address until it receives another Assign
address command or until it loses power.

7.3.5. Capabilities Information
The keywords defined in this section have standard meanings only within the Monitor
Device protocol.

Keyword Meaning

monitor Used as a prot() token to identify a device belonging to this protocol class.

crt Used as a type() token to identify a monitor device that uses a cathode ray
tube.

lcd Used as a type() token to identify a monitor device that uses some form a flat
panel liquid crystal monitor technology.

BA Used as a prev() token to identify the current ACCESS.bus base protocol and
device specific protocol revision. The current prev value for monitors is BA.
"B "is the current ACCESS.bus base protocol revision (V3.0). "A" is the
current revision of the Monitor Device protocol V1.0.

edid() The edid entry contains the Extended Display ID Information data structure.
This entry is in binary format.

vdif() The vdif entry contains the Video Display Information data structure. This
entry is in binary format.

cmds() The cmds entry contains a list of supported monitor device protocol
commands. This entry is in ASCII format.

vcp() The vcp entry contains a list of virtual control panel commands. VCP entry is
in ASCII format.

vcpname() The vcpname entry contains a list of names associated with the virtual control
panel commands. VCP Name entries are in ASCII format.

An example of a video monitor capabilities message is:

(
prot(monitor)
type(crt)
model(ABC XXX)
pwr({run() stdby() susp() shut() ssave() psave()})
prev(BA)
edid bin(count(... EDID Binary data ...))
vdif bin(count(... VDIF Binary data ...))
cmds (01 02 03 04 05 06 07 08 4E 4F)
vcp (10 12 16 18 1A 50 92)
vcpname (92(x-feature))
)

ACCESS.bus Monitor Device Protocol Specification V3.0 7-5

7.3.5.1. EDID Capability string
The EDID data structure is encapsulated in an ACCESS.bus binary data
keyword:

bin(count(data)), Where count is the number of bytes of data.

EDID is defined in the VESA Display Data Channel Specification (DDC).
EDID is a 128 data structure containing basic display specification.

An example of the EDID binary capability string in Microsoft Assembler
format is:

db "edid bin(128("
db 00h ;8 byte EDID header
db 0FFh ;
db 0FFh ;
db 0FFh ;
db 0FFh ;
db 0FFh ;
db 0FFh ;
db 00h ;
db xxh ;Remaining 120 bytes of EDID
db "))" ;Delimiter

In binary capability strings data outside the inner parenthesis is a string of
ASCII bytes. Data within the string is in binary format. Software parsing this
data structure uses the count to skip over or extract the binary data as
necessary.

7.3.5.2. VDIF Capability string
The VDIF data structure is encapsulated in an ACCESS.bus binary data
keyword:

 bin(count (data)), where count is the number of bytes of data.

VDIF is defined in the VESA Display Information Format Specification. It is a
variable length data structure containing a complete display description. VDIF
is transferred in Binary File Format from the monitor to host.

7.3.5.3. CMDS Capability String
CMDS data is a ASCII string of primary monitor device and vender defined op-
codes. All op-codes must be represented by two ASCII hexadecimal characters.
Spaces between op-codes are optional.

7.3.5.4. VCP Capabilities string
VCP data is an ASCII string of monitor control panel functions. All op-codes
must be represented by two ASCII hexadecimal characters. Spaces between op-
codes are optional.

VCP features:

• VCP op-codes and key codes share the same binary values. This allows the

host to associate control keys with VCP commands.

ACCESS.bus Monitor Device Protocol Specification V3.07-6

• Rich set of predefined monitor commands.

• Functions for Getting, Setting, Resetting and Enabling/Disabling control

panel functions.

• VCP commands reserved for vender specific commands.

An example of the VCP capability string in Microsoft Assembler format is:

db "vcp("
db "00" ;Degauss VCP op-code
db "10" ;Brightness VCP op-code
db "12" ;Contrast op-code
db "90" ;Vender VCP op-code (Set Parm)
db "92" ;Vender VCP op-code (Set Parm)
db "94" ;Vender VCP op-code (Set Parm)
db ")" ;Delimiter

This Display allows remote control of Degauss, Brightness, and Contrast. In
addition it supports three vender defined commands.

The VCP capabilities string returns a list of all supported VCP commands. For
example, the following VCP string implements control of Brightness, Contrast,
and Degauss.

vcp (001012)

Each VCP command is represented by its corresponding two digit ASCII value.
To minimize monitor storage requirements spaces between VCP values are
optional.

vcp (00 10 12)

This is identical to the pervious VCP string.

7.3.5.5. VCP Name Capabilities string
VCP Name capabilities string provides a way to associate a name with a VCP
feature or a VCP feature’s parameter list. This is particularly useful for vendor
defined VCP features or enumeratiuon of short parameter lists for any VCP
control.

The VCP Name capabilities string consists of a list of VCP op-codes, each
followed by its associated name as a string enclosed in parenthesis. If the name
consist of any of the reserved characters such as a space they must be specified
by using the \xHH convention to include them in the string.

The VCP Name string uses a nested structure which also allows naming for the
parameter list of a VCP feature. The list of names follows the feature name
enclosed by parenthesis. In this case the first name listed is associated with the
minimum value of the VCP feature. Additional names are associated with the
next highest value in the order they are listed.

ACCESS.bus Monitor Device Protocol Specification V3.0 7-7

For named parameter lists it is not necessary to provide a name for the actual
VCP feature especially if the VCP op-code falls in the range of pre-defined op-
codes.

VCP Names listed for predefined op-codes indicate vendor preferred names for
those features. The software may or may not make use of these name.

An example of the VCP Name capability string in Microsoft Assembler format
is:

db "vcpname("
db "14" ;Select Color preset VCP op-code
db "(" ;Predefined opcode no name required
db "(9300 " ;Name for minimum parameter
db "6500 " ;Name for next parameter
db "5500))" ;Name for next parameter
db "44" ;Tilt VCP op-code
db "(Rotate)" ;Vendor preferred name
db "80" ;Vendor VCP op-code
db "(Do\x20this" ;Vendor name "Do this"
db "(On " ;Name for minimum parameter
db "Off)" ;Name for next parameter
db "82" ;Vendor VCP op-code
db "(Fixit)" ;Vendor name "Fixit"
db ")" ;Delimiter

In the example above the string indicates that

The Select Color Preset function associates the names 9300, 6500 and 5500
with the 0,1 and 2 settings of this control.

The vendor prefers the name “Rotate” for the Tilt control

Opcode 80 is named “Do this” and has parameters name On and Off

Opcode 82 is named “Fixit”.

7.3.5.6. Enable Application Report
This command is used to enable and disable application reports (op codes 80-
BFh) and device data stream messages (op codes 40-4Fh). When application
reporting is disabled the monitor device must not transmit these messages.
However, it still responds to other host commands. In the disable state, the
monitor does not create new messages and discards any unsent ones.

7.3.5.7. Resource Allocation (Optional)
Monitor devices use this function to request host resources. This is an optional
host feature. Monitors should not assume all host systems provide this
capability.

7.3.5.8. Vender Reserved Op codes (Optional)
The (C0-C8h) op codes are reserved for Vender defined features. In addition,
the Monitor Device protocol reserves additional op codes for vender defined op
codes. See appendix A.

ACCESS.bus Monitor Device Protocol Specification V3.07-8

7.3.5.9. Device Power Management (Optional)
ACCESS.bus and VESA Display Power Management Signaling (DPMS)
specifications implement display power management. Both specifications
define four power states, run (on), standby, suspend, and off. In addition
DDC1/2AB monitors can use the host system to store configuration information
in low power states. DDC1/2AB compliant monitors should respond to
ACCESS.bus power management commands. If there is a conflict with DPMS,
ACCESS.bus commands take precedent. Refer to the VESA Display Power
Management Specification for more details.

7.3.5.10. Device Bandwidth Management (Optional)
Base level ACCESS.bus commands implement bandwidth management to
provide equal access to all devices. Monitors consume very little bandwidth.
Most monitors will not need to implement this feature.

7.4. Base Protocol -- Application Part
The Application portion of the base protocol allows the device to signal changes in status or error
conditions.

7.4.1. Application Hardware Signal (Optional)
The monitor device may generate this message to request the Host perform, a Reset,
Halt, or to request attention. This feature is optional at the Host side. Monitors should
not assume all systems respond to this message. For systems that do, a monitor could
provide front panel buttons for CPU Reset, etc.

7.4.2. Application Test Report
In response to an Application Test command the monitor device shall respond with a
self test report.

Self test error code uses the high nibble to encode the major problem area. If the monitor
provides additional diagnostic information, it is returned in the low nibble. The monitor
may also return up to 30 bytes of additional test result information.

Device to Host:

50 XX PL A1 ST YY ... YY CS

Where:

50 Host address
XX Monitor device address
PL Message Length (P=1, Length =2 to 32)
PL = 10LLLLLL where LLLLLL = from 000010 to 100000
A1 Self test reply op code
ST Self test result

00h Successful Self Test
1xh ROM error
2xh RAM error
3xh Stuck key
4xh Video error
5xh Vertical error
6xh Horizontal error
7xh Power supply error

ACCESS.bus Monitor Device Protocol Specification V3.0 7-9

80-FFh Other error
YY 0-30 bytes of additional test information
CS Checksum

7.4.3. Application Status Message
Application status message allows devices to report changes in their status or various
error conditions. This message allows both predefined and user defined messages to be
transferred to the appropriate driver. A monitor may use this message to report general
status such as device not ready, or changes in device capabilities.

7.5. Monitor Device Messages and Commands
All commands and messages in this section are optional. The monitor informs the host which
commands are implemented by listing the command op-code in the CMDS capability string. A
second capability string VCP is used to inform the host which control panel features are
implemented.

Most functions require three op-codes, a host to device request, the monitor's reply and a change
command request. VCP controls may also make use of additional op-codes to Reset the function
to the factory shipped default value and to Toggle the function between an Enabled and Disabled
state.

Many commands emulate traditional user interface front and back panel controls. For example,
brightness may be increased by reading the current setting then writing back a larger value. To
simplify implementation, these functions utilize a Primary op code to encode the desired
operation (Get, Reply, Set, Reset, Enable/Disable) and a VCP op code to specify the parameter
being manipulated.

7.5.1. Get VCP Feature
The get Virtual Control panel command instructs the monitor to send information about
the selected control feature back to the host in a reply message. The VCP op-code
informs the monitor which feature to return.

Host to Device:

XX 50 82 01 CP CS

Where:

XX Monitor device address
50 Host address
82 Message Length (P = 1, Length = 2 bytes)
01 Get named feature - Primary op code
CP VCP op code
CS Checksum

Example:

XX 50 82 01 10 CS

This command requests the current brightness setting.

7.5.2. VCP Feature Reply
The VCP Feature reply message shall be issued by the monitor in reply to a Get VCP
Feature request. The reply consists of a byte string that returns the VCP request op-code,

ACCESS.bus Monitor Device Protocol Specification V3.07-10

identifies the maximum parameter size, and returns the current setting of the requested
VCP feature.

Minimum values for the parameters are zero. The maximum value is a 16 bit integer
encoded as a high and low byte. The reply returns the maximum allowable value the
monitor will accept. Host commands and monitor responses are LSB justified. For
example, if the monitor encodes contrast as a 6 bit value and the current contrast setting
is 1Eh the high byte is 00h and the low byte is 1Eh.

Device to Host:

50 XX 88 02 RC CP TP MH ML SH SL CS

Where:

50 Host address
XX Monitor device address
88 Message Length (P = 1, Length = 8 bytes)
02 VCP feature reply op code
RC Result code

00h No error
01h Unsupported VCP op-code

CP VCP op code from Feature request message
TP VCP type code

00h Set parameter
01h Momentary

MH Maximum value high byte
ML Maximum value low byte
SH Present value high byte
SL Present value low byte
CS Checksum

Example:

50 XX 88 02 00 10 00 03 5F 00 FE CS

This string returns the current brightness setting. The maximum brightness is 035Fh
and the current value is 00FEh.

The VCP type code tells the host how to interpret the reply. Two type code have been
defined.

SET PARAMETER op codes affect monitor operation. Writing a new value with a Set
VCP feature will change some aspect of monitor operation.

MOMENTARY op codes also affects monitor operation. However, a momentary code
cause the monitor to perform a self timed operation such as degauss or a display test.
These commands have only two states on/off. The host does not expect the monitor to
stay in a momentary condition.

ACCESS.bus Monitor Device Protocol Specification V3.0 7-11

7.5.3. Set VCP Feature
The Set VCP Feature instructs the monitor to change the parameter specified by the
minor op-code. If the host attempts to select a value that exceeds the permissible
adjustment range the monitor selects the largest permissible value.

Host to Device:

XX 50 84 03 CP SH SL CS

Where:

XX Monitor device address
50 Host address
84 Message Length (P = 1, Length = 4 bytes)
03 Set VCP Feature - op code
CP VCP op code
SH high byte
SL low byte
CS Checksum

Example:

XX 50 84 03 10 00 45 CS.

This command sets new brightness level to 0045h:

7.5.4. Get User Control Key Mode
Monitors typically implement control buttons to allow the user to adjust the displayed
image. Buttons are used to control such features as Brightness, Contrast and Degauss.
ACCESS.bus allows the host to take control of these adjustments. The Monitor may be
configured to give the host system varying degrees of control, from none, to complete
remote control.

This command requests the current key mode.

Host to device:

XX 50 81 04 CS

Where:

XX Monitor device address
50 Host address
81 Message length (P=1, Length =1 byte)
04 Get user Control key mode request - major op code
CS Checksum

7.5.5. User Control Key Reply
The user control key reply message shall be issued by the monitor in reply to a Get User
Control key message. This message returns the current control key mode to the host.

Device to Host:

ACCESS.bus Monitor Device Protocol Specification V3.07-12

50 XX 82 05 KM CS

Where:

50 Host address
XX Monitor device address
82 Message Length (P = 1, Length = 2 bytes)
05 User Control key mode reply op-code
KM Key Mode

03h Lock local keys
02h Remote key operation host notification
01h Local key operation, with host notification
00h Local key operation, no host notification

CS Checksum

In local key - no host notification mode - the monitor processes all button presses. Key
state reports are not sent to the host.

In local key - with host notification mode - the monitor process the keys locally. It also
sends a key state report to the host each time a key is pressed.

In Remote key mode - the monitor sends key state report to the host each time a key is
pressed. The monitor does not process the key information. Changes to monitor settings
are effected by the host.

Lock key mode - prevents use of monitor control keys, host commands are processed
normally.

The monitor should default to mode 0, local key operation. The state of this feature
should not be stored in nonvolatile memory.

7.5.6. Set User control Key Mode
This command instructs the monitor to change the current control key mode. If the
monitor cannot change to the requested mode, the request is ignored, the mode is
unchanged.

Host to Device:

XX 50 82 06 KM CS

Where:

XX Monitor device address
50 Host address
82 Message Length (P = 1, Length = 2 bytes)
06 Set user control key op-code
KM Command argument

03h Lock local keys
02h Remote key operation host notification
01h Local key operation, with host notification
00h Local key operation, no host notification

CS Checksum

ACCESS.bus Monitor Device Protocol Specification V3.0 7-13

7.5.7. Get Timing Report
This command instructs the monitor to return current horizontal and vertical timing
information in a monitor timing report message to the host.

Host to Device:

XX 50 81 07 CS

Where:

XX Monitor device address
50 Host address
81 Message Length (P = 1, Length = 1 bytes)
07 Get Timing Report op code
CS Checksum

7.5.8. Get Key Report
This command instructs the monitor to return the current key state in a monitor event
report message to the host.

Host to Device:

XX 50 81 08 CS

Where:

XX Monitor device address
50 Host address
81 Message Length (P = 1, Length = 1 bytes)
08 Get key report op code
CS Checksum

7.5.9. Reset VCP Feature
The Reset VCP Feature is used to reset an individual VCP Feature to its factory shipped
condition. The command instructs the monitor to reset the parameter specified by the
minor op-code and then inform the host of this new setting with a VCP Feature Reply.
In the case where a VCP feature does not make use of a reset function the monitor
ignores this command.

Host to Device:

XX 50 82 09 CP CS

Where:

XX Monitor device address
50 Host address
82 Message Length (P = 1, Length = 2 bytes)
09 Reset VCP Feature - Primary op code
CP VCP op code
CS Checksum

Example:

ACCESS.bus Monitor Device Protocol Specification V3.07-14

XX 50 82 09 10 CS

This command resets the current brightness setting.

7.5.10. Disable VCP Feature
The Disable VCP Feature instructs the monitor to disable the adjusted state of the
control panel feature specified by the minor op-code. This operation is useful to
implement functions like Audio Volume Mute. The enabled state of a control uses the
value set by the Set VCP feature command. The disabled state of a control uses a non-
adjustable value for the control. Depending on the control this may be a factory default
value, the controls minimum value or its maximum value. The monitor responds to this
message with the current setting by sending a VCP Feature Reply with a value of 0 in
the Maximim Value and Currnet Value fields. In the case where a feature does not
make use of a Enable/Disable state the monitor will ignore this command.

Host to Device:

XX 50 82 0A CP CS

Where:

XX Monitor device address
50 Host address
82 Message Length (P = 1, Length = 2 bytes)
0A Disable VCP Feature - Primary op code
CP VCP op code
CS Checksum

Example:

XX 50 82 0A 62 CS

This command will disable the Audio Volume (muted state).

7.5.11. Enable VCP Feature
The Enable VCP Feature instructs the monitor to enable the adjusted state of the control
panel feature specified by the minor op-code. This operation is useful to implement
functions like Audio Volume Mute. The enabled state of a control uses the value set by
the Set VCP feature command. The disabled state of a control uses a non-adjustable
value for the control. Depending on the control this may be a factory default value, the
controls minimum value or its maximum value. The monitor responds to this message
with the current setting by sending a VCP Feature Reply with the present value of the
VCP feature set to the value previous to the disable command. In the case where a
feature does not make use of a Enable/Disable state the monitor will ignore this
command.

Host to Device: XX 50 82 0B CP CS

Where: XX Monitor device address
50 Host address
82 Message Length (P = 1, Length = 2 bytes)
0B Enable VCP Feature - Primary op code

ACCESS.bus Monitor Device Protocol Specification V3.0 7-15

CP VCP op code
CS Checksum

Example: XX 50 82 0B 62 CS
This command will enable the Audio Volume back to the value in its normal state

7.5.12. Save Current Settings
This command instructs the monitor to save all programmable values to nonvolatile
memory.

Host to Device:

XX 50 81 0C CS

Where:

XX Monitor device address
50 Host address
81 Message Length (P = 1, Length = 1 bytes)
0C Save current settings op code
CS Checksum

7.5.13. Vender Reserved Op-codes
The Monitor Device Protocol reserves 48 Primary Op Codes (50-7Fh) and 64 VCP Op
Codes (80-FEh) for vender defined features.

7.6. Monitor Device Data Stream Messages
The Monitor Device protocol defines two data stream messages, key state and timing. Changes in
these setting are not controlled by ACCESS.bus events, but these settings change asynchronously
in response to external events. These messages are enabled and disabled with the Enable
Application Report command. Changes that occur while the monitor device is in a disabled state
should be ignored.

7.6.1. Timing Report
The timing message reports the current Horizontal and Vertical synchronization
frequencies. The monitor transmits this message to the host in reply to a Get Timing
Information message or optionally whenever it detects a change in video mode.

The status byte returns sync polarity and whether the report is valid. The monitor sets bit
7 if the sync frequencies are not supported. Bit 6 is set if the monitor cannot accurately
determine what the sync frequencies are. It may also return unstable count (bit 6) during
mode changes if the monitor has not yet locked to the new sync rates. Unstable count
may be temporary condition. The host should resend the request timing command after a
1 second delay to give the monitor time to lock to the new signals..

Horizontal and Vertical sync rates are reported in the frequency domain as 16 bit values.
Horizontal sync is reported in 10hz increments from .01khz-655.35khz Vertical sync is
reported in .01hz increments from .01-655.35hz.

Device to Host:

50 XX 06 4E SS HH HL VH VL CS

Where:

ACCESS.bus Monitor Device Protocol Specification V3.07-16

50 Host address
XX Monitor device address
06 Message Length (P = 0 Device data stream message,Length = 5)
4E Timing message op code
SS Timing status byte

bit 7 = 1 Sync freq. out of range
bit 6 = 1 Unstable count
bit 5 = 2 Reserved must be 0
bit 1 = 1 Positive horz sync
 = 0 Negative horz sync
bit 0 = 1 Positive vert sync
 = 0 Negative vert sync

HH High byte of Horizontal frequency
HL Low Byte of Horizontal frequency
VH High byte of Vertical frequency
VL Low byte of Vertical frequency
CS Checksum

7.6.2. Key State Report
The monitor may be programmed to send a message reporting the state of the monitor's
user control keys. The report consists of a list of up to ten simultaneously pressed
buttons. For each button that is pressed the monitor returns its button number. Button
numbers start at 1, a report with a single button number of 0 indicates that no buttons
are pressed. A report is sent each time a button transition, either up or down, occurs or
on demand by the host.

The monitor may generate key messages outside of the defined range of key codes that
do not have a corresponding host command. Monitors will however provide command
support for each of the functions defined in the key code table for which the monitor
sends key code reports.

The control key state report message format for no active buttons is:

Device to Host:

50 XX 02 4F 00 CS

Where:

50 Host address
XX Monitor device address
02 Message Length (P = 0 Device data stream message , Length = 2)
4F Key Press op code
00 No buttons pressed
CS Checksum

The control key state report message format for active buttons is:

Device to Host:

50 XX 0L 4F BN BN BN CS

Where:

ACCESS.bus Monitor Device Protocol Specification V3.0 7-17

50 Host address
XX Monitor device address
0L Message Length (P = 0, Device data stream message,

Length = 2-11)
4F Key press op code
BN 1 to 10 Active button numbers bytes
CS Checksum

Most monitor features require two control keys. One key to increase and another to
decrease the item of interest. Bit 0 of the key code denotes whether the key increases or
decreases the feature. Even numbered keys decrease (bit 0 = 0), and odd numbered keys
increase the setting. Momentary keys are odd numbered. To provide synchronization
between VCP op codes and key codes, the VCP code for a particular feature is the same
value as the decrease key code.

Appendix 7A

Op Code Summary
Monitor op-codes are divided into two categories. Primary op-codes select major monitor
features. Virtual Control Panel op-codes are used to specify the sub functions of the Get, Reply,
Set, Reset, Enable and Disable VCP commands. All VCP op codes correspond to the even values
of corresponding key codes.

Monitor control panel buttons are either momentary or they increment/decrement a function.
Decrement keys are even numbered, increment keys are odd numbered. Key codes for momentary
functions, such as degauss are odd numbered. This allows easy association of control keys with
VCP op codes. Note key code 00h indicates no key pressed, this is a special case.

Key code examples:

Key code 10h lowers brightness
Key code 11h increases brightness.
Key code 01h starts degauss cycle

7A.1 Virtual Control Panel Op-Codes

Op-code Command Function
00h Degauss Starts self timed degauss cycle.
02h Secondary Degauss Starts self timed deguass cycle on secondary

degauss circuit
04h Restore Factory

Defaults
Restores the display to the factory shipped
condition

06h Restore Factory Default
Geometry

Restores the display geometry settings to the factory
shipped condition

08h Restore Factory Default
Color

Restores the display color settings to the factory
shipped condition

0Ah Restore Factory Default
Position

Restores the factory horizontal and vertical
position settings for the current video mode
connected to the display. This has no meaning if
there is no mode driving the display.

ACCESS.bus Monitor Device Protocol Specification V3.07-18

0Ch Restore Factory Default
Size

Restores the factory horizontal and vertical size
settings for the current video mode connected to the
display. This has no meaning if there is no mode
driving the display.
Note: Individual VCP features are reset to factory
shipped condition by using the VCP Reset Feature
command.

10h Brightness Increasing this value increases black level
luminance of the display.

12h Contrast Increasing this value increases ratio between the
maximum and minimum luminance values.

ACCESS.bus Monitor Device Protocol Specification V3.0 7-19

Op-code Command Function
14h Select Color preset Sets preselected color preset value. A change of

this setting may affect the current values of Red
Green and Blue Video Gain, Hue, Saturation and
Color Curve Adjust if these controls are available

16h Red Video Gain Increasing this value increases the luminance of red
pixels. This control may affect values of Video
Gain, Hue, Saturation and Color Curve Adjust if
these controls are available

18h Green Video Gain Increasing this value increases the luminance of
green pixels. This control may affect values of
Video Gain, Hue, Saturation and Color Curve
Adjust if these controls are available

1Ah Blue Video Gain Increasing this value increases the luminance of
blue pixels. This control may affect values of
Video Gain, Hue, Saturation and Color Curve
Adjust if these controls are available

1Ch Focus Changing this value adjusts the apparent spot size.

20h Horizontal Position Increasing this value moves the image toward the
right side of the display.

22h Horizontal Size Increasing this value increases the distance between
the left and right sides of the image

24h Horizontal Pincushion Increasing this value causes the right and left sides
of the image to become more convex.

26h Horizontal Pincushion
Balance

Increasing this value moves the center section of
the image toward the right side of the display.

28h Horizontal
Misconvergence

Increasing this value will shift the red pixels to the
right across the image and the blue pixels left
across the image with respect to the green pixels.

2Ah Horizontal Linearity Increasing this value shifts the density of pixels
from the left and right ends to the center of the
image

2Ch Horizontal Linearity
Balance

Increasing this value shifts the density of pixels
from the left side to the right side of the image

30h Vertical Position Increasing this value moves the image toward the
top of the display.

32h Vertical Size Increasing this value increases the distance between
the top and bottom of the image.

34h Vertical Pincushion Increasing this value causes the top and bottom
sides of the image to become more convex.

36h Vertical Pincushion
Balance

Increasing this value moves the center section of
the image toward the top of the display.

38h Vertical
Misconvergence

Increasing this value will shift the red pixels up
across the image and the blue pixels down across
the image with respect to the green pixels.

3Ah Vertical Linearity Increasing this value shifts the density of scan lines
from the ends to the center of the image

3Ch Vertical Linearity
Balance

Increasing this value shifts the density of scan lines
from the top end to the bottom end of the image

ACCESS.bus Monitor Device Protocol Specification V3.07-20

Op-code Command Function
40h Parallelogram

Distortion (Key
Balance

Increasing this value shifts the top section of the
image to the right with respect to the bottom
section of the image

42h Trapezoidal Distortion
(Key)

Increasing this value increases the ratio between
the horizontal size at the top of the image relative
to the horizontal size at the bottom of the image

44h Tilt (Rotation) Increasing this value rotates the image clockwise
about the center point of the image.

46h Top Corner Distortion
Control

Increasing this value increases the distance between
the left and right side at the top end of the image

48h Top Corner Distortion
Balance

Increasing this value moves the top end of the
image to the right

4Ah Bottom Corner
Distortion Control

Increasing this value increases the distance between
the left and right side at the bottom end of the
image

4Ch Bottom Corner
Distortion Balance

Increasing this value moves the bottom end of the
image to the right

50h Hue Changing this value adjusts the color of the display
when the Saturation is a non-zero value. Values
near 0 and near the maximum create a reddish
display. Increasing from zero towards maximum
makes the display greenish then bluish.
This control may affect values of Red Gain, Green
Gain, Blue Gain and Color Curve Adjust if these
controls are available

52h Saturation Increasing this value increases the saturation of the
adjusted Hue setting. This control may affect
values of Red Gain, Green Gain, Blue Gain and
Color Curve Adjust if these controls are available

54h Color curve adjust Increasing this value increases the color
temperature from minimum to maximum along the
black body curve. This control may affect values of
Red Gain, Green Gain, Blue Gain, Hue and
Saturation if these controls are also available

56h Horizontal Moire Adjusting this value controls the horizontal picture
moire

58h Vertical Moire Adjusting this value controls the vertical picture
moire

5Ah Auto Size Center
Enable/Disable

Enable/Disable automatic sizing and centering of
the display. A value of 0 indicates disable auto size
center, 1 indicates enable auto size center.

5Ch Landing Adjust Adjusting this value affects color purity of the
monitor by changing beam angle to align the beam
with the red green and blue phosphor on the
monitor face

ACCESS.bus Monitor Device Protocol Specification V3.0 7-21

Op-code Command Function
5Eh Input level Select Changing this value chooses a different video input

voltage for the monitor
60h Input Source Select Changing this value selects a different video input

source. (this command may effectively disconnect
the monitor from the ACCESS.bus. An alternate
way to restore this setting must be available)

62h Audio Speaker Volume
Adjust

Increasing this value increases the audio gain of the
speakers

64h Audio Microphone
Volume Adjust

Increasing this value increases the audio gain of the
microphone

66h On Screen Display
Enable/Disable

Enables/Disables the display of On Screen
Controls. This does not disable the user controls,
only the on screen display of the controls
0=disable 1=enable

68h Language Select changing this value chooses a different language
for the On Screen Control functions

80-FEh Reserved Reserved for Vender Control Keys

7A.2 Monitor Op-Codes

Op-code Command Function
00h Reserved Reserved for future Monitor Device Protocol use.
01h Get VCP Feature Used with VCP op-code to request current value of

feature.
02h VCP Feature Reply Monitor's reply to VCP request.
03h Set VCP Feature Used with VCP op-code to set feature value.
04h Get Control Key mode Request current setting of Control key mode
05h Control Key Reply Monitor's reply Control Key mode request
06h Set Control Key mode Sets new control key mode.
07h Get Timing Report Requests current Vsync and Hsync timing values.
08h Get Control Key Report Requests state of User control keys.
09h Reset VCP Feature Used with VCP op-code to reset an individual

feature to its factory shipped condition
0Ah Disable VCP Feature Used with VCP op-code to switch a feature from its

enabled to its disabled state
0Bh Enable VCP Feature Used with VCP op-code to switch a feature from its

disabled to its enabled state
0Ch Save Current Setting Save current settings in non volatile memory

0D-3Fh Reserved Reserved for future Monitor Device Protocol use

40-4Dh Reserved Reserved for Future Monitor Device Protocol use
Device data stream messages

4Eh Timing Report Current value of Vsync and Hsync.
4Fh Key Report State of user control keys.

50-7Fh Vendor Reserved Reserved for Vendor defined functions

ACCESS.bus Monitor Device Protocol Specification V3.07-22

Appendix 7B

Design Considerations
This section is not a formal part of the Monitor Device Protocol specification. It is meant as an
aid for monitor and computer system designers implementing ACCESS.bus.

Monitor Host Detection
The VESA Monitor Display Data Channel (DDC) specification defines a multitiered protocol,
allowing system and monitor designers to select the most appropriate feature set. DDC provides
three levels of host implementation, monitor data stream clocked by Vsync (DDC1), I2C master
(DDC2B), and ACCESS.bus (DDC2AB).

The monitor must automatically determine the host system implementation. If the monitor is
attached to a system that is not DDC compliant, it should continue to support existing industry
standards for monitor identification using the two identification pins not utilized by DDC. This
section discusses compliance with the VESA DDC specification only, OLD type systems are not
discussed.

The monitor needs to determine the type of host system:

DDC1 or OLD type host
DDC2B host (Host is master, monitor is always slave)
DDC2AB host ACCESS.bus

The sequences of events are as follows:

1. DDC1/2B detection:
 Assume monitor is connected to a DDC1 or OLD type host. Output EDID information

clocked by Vertical Sync.

 IF SCL activity detected switch to DDC2B mode. Emulate EDID memory device. Set

monitor to I2C slave address A0/A1h. Goto step 2

2. DDC2AB detection:

The monitor determines if an ACCESS.bus Host is present by detecting valid ACCESS.bus
commands directed to address 6Eh. IF the monitor determines that ACCESS.bus Host is
present it will, reset device address to 6Eh, disable DDC1/2B mode and enable ACCESS.bus
mode.

Monitors check for Host presence by checking activity at address 6Eh. If the monitor cannot
detect both address A0h and 6Eh at the same time, it is recommended to periodically switch from
address A0h to 6Eh to test if the ACCESS.bus Host is present and switch back to A0h if the host
is not detected.

While temporarily at address 6E, the monitor should watch for a Reset message to address 6Eh
from the host address, 50h. The monitor should also try sending an Attention message to address
50h. If this message is not acknowledged, the monitor can switch back to address A0h and
recheck again at some later time period.

Once in DDC2B Mode, the monitor should always be ready to switch to ACCESS.bus.

ACCESS.bus Monitor Device Protocol Specification V3.0 7-23

ACCESS.bus Host Monitor Detection -Host Boot Time
The VESA DDC specification define two classes of monitors. DDC1/2B and DDC1/2AB.
DDC1/2B monitors store monitor capability information in an I2C device. Host systems obtain
the monitor's EDID information by performing a slave memory read of the 128 byte EDID
structure. DDC1 is read back only, this type of monitor does not support remote control.
DDC1/2AB monitors are ACCESS.bus devices. They can provide greater capability information
and allow the host to control monitor features remotely. All DDC compliant monitors support
DDC1/2B, support for DDC1/2AB is optional.

ACCESS.bus Plug and Play host systems should support the attachment of three different types of
monitor.

Non Plug and Play monitor
DDC1/2B - Slave I2C
DDC1/2AB - ACCESS.bus

The sequence of events are as follows:

1. Stuck bit detection:
 IF the ACCESS.bus micro controller allows I/O stuck-at testing, test both clock and data

lines for stuck high or stuck low problems.

 IF a failure occurs disconnect the clock and data lines from the monitor. Abort attempt to

communicate with monitor.

 DDC monitors power up in a data streaming mode, clocked by vertical sync. The monitor

automatically terminates this mode when it detects I2C clock transitions. It is good design
practice to toggle the clock line before ACCESS.bus initialization.

 OLD type of monitors may interfere with the ACCESS.bus clock and data lines. The DDC

specification reassigns two VGA ID lines as the I2C clock and data signals. OLD type of
monitors selectively ground the ID lines to encode monitor type.

2. DDC2AB detection:
 Issue a Reset command to address 6Eh. Attempt normal ACCESS.bus device initialization.
 IF successful, a DDC1/2AB monitor is detected. The Monitor has full ACCESS.bus

capability.
 ELSE Goto step 3.

3. DDC2B detection:
 Attempt to read the VESA EDID information from the monitor. Select slave address A0h.

Attempt to read the VESA EDID structure starting at memory address 0h. EDID data is 128
bytes long beginning at memory address 00h. Use the auto increment feature to read back
EDID. The EDID header is 00 FF FF FF FF FF FF 00.

 IF EDID data is returned, a VESA DDC1/2B type monitor is attached.

 ELSE monitor does not support VESA DDC Goto step 4.

 DDC1/2B class monitors store EDID data in an I2C device. Host support for DDC1/2B

requires I2C master transmitter and master receiver functions.

4. OLD type of monitors:

ACCESS.bus Monitor Device Protocol Specification V3.07-24

Use industry standard methods to determine monitor type.

ACCESS.bus Host Monitor Detection -Hot Monitor Attach
DDC2AB monitors may be connected to ACCESS.bus host after the system is powered up. When
the monitor is first powered-on, it will be in DDC1 communication mode., outputting
information as clocked by VSYNC. When it detects the presence of SCL it switches to DDC2B
mode. In this mode it responds as a slave device to memory reads at A0/A1h. When the monitor
detects that it is connected to an ACCESS.bus host, it sets its base address to the ACCESS.bus
power up default address 6Eh. Then the monitor sends the standard ACCESS.bus Attention
message. When the host recognizes this message it sets the monitor to an unused address and
performs normal ACCESS.bus messaging.

Monitor Isolation
The VESA DDC communication interface redefines two of the existing VGA ID pins as I2C
clock and data signals. These signals were chosen to minimize compatibility problems with
existing monitors. However, if a monitor grounds any of the ID lines used for DDC
communication, the ACCESS.bus interface is rendered inoperable. The VGA specification
indicates monitor type by grounding different combinations of ID pins. If the system designer
needs to support OLD type of monitors some form of monitor disconnect is necessary.

The VESA DDC specification defines a 5 pin connector between the host motherboard and video
controller card. The main purpose of this connector is to connect an ACCESS.bus host system to
a DDC compliant add in Video display adapter. If manual disconnect is acceptable, this
connector may be used to isolate interfering monitors. Another possibility is to use a bi-
directional hardware switch. This allows hardware isolation under software control, and may be a
better strategy for Plug and Play systems.

DC Loading
ACCESS.bus devices are specified to sink 6mA. To maximize transfer speed, the host uses low
value pull-up resistors to source approximately 6mA. The DC loads of add-on video cards and
monitors must be taken into account by the system designer.

VESA specifies a 47k pull-up on the monitor clock line. This increases the ACCESS.bus clock
sink requirements by approximately 100µa. This is equivalent to 10 standard ACCESS.bus
devices, this small value may generally be ignored. However, if more than one monitor is likely
to be connected, the motherboard pull-up resistors should be increased to keep clock line sink
current from exceeding 6mA.

Add on video adapter cards, that support DDC, are designed to work as stand alone DDC1/2B
interfaces or with ACCESS.bus hosts. This means the adapter card must provide pull-up resistors
on the clock and data lines. The VESA specification requires adapter cards use 1.5k pull-ups.
When the adapter card is installed in an ACCESS.bus system, these pull-ups are in parallel with
the host pull-up resistors. Host systems that support add on video cards should increase the value
of the motherboard pull-up resistors to keep clock and data line sink current from exceeding
6mA.

Multiple Monitor Support
In multiple display systems the displays may be attached to more than one video controller. The
video driver needs to determine how the displays are connected. The ACCESS.bus allows
individual displays to be identified, however it does not provide a means to associate a display
with a particular video controller.

The Monitor Timing Message provides a convenient method to do this The Video driver changes
the timing mode of one of the video controllers. The driver can then send a Get Timing Report

ACCESS.bus Monitor Device Protocol Specification V3.0 7-25

command to all monitors. The monitor attached to that controller will send a Monitor Timing
Message corresponding to the correct mode. The Video device driver can use this information to
determine which monitors are attached to which controllers.

Monitor Change Notification
One of the advantages of the ACCESS.bus, is automatic host notification when devices are
plugged in. This is an important feature in Plug and Play systems.

Monitors that are only DDC1/2B compliant do not have this capability. ACCESS.bus host
systems should periodically test for the presence of DDC1/2B monitors. This requires testing for
the presence of a slave memory device at address A0h. This should be done as part of the other
ACCESS.bus housekeeping tasks. This makes it easy to detect monitor attachment or removal.

Video Switch Boxes
Video switch boxes allow a single display to be attached to more than one computer system.
Switch boxes vary in sophistication. System designers should assume switching a monitor to a
different host completely disconnects it from other hosts.

The previous Design Considerations recommend ACCESS.bus hosts detect disconnect and
attachment of both DDC1/2B and DDC1/2AB type monitors. Video device drivers should be
designed to assume the video display may be connected and disconnected at any time. The device
driver should ignore monitor disconnect. It should not change video capabilities until it receives a
monitor connect message. This minimizes the time it takes to recognize and resynchronize when
the monitor is reconnected.

SECTION 8

ACCESS.bus

Smart Battery System Device Protocol Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

8. Introduction ... 8-1

8.1. Design Objectives.. 8-1

8.2. Smart Battery System Overview.. 8-1

8.3. Conventions... 8-1

8.4. Control of Specification.. 8-1

8.5. Base Protocol - Interface Part.. 8-2

8.5.1. Reset.. 8-2

8.5.2. Attention.. 8-2

8.5.3. Identification ... 8-2

8.5.4. Assign Address .. 8-2

8.5.5. Capabilities Information .. 8-2

8.5.6. Device Bandwidth Management .. 8-3

8.6. Base Protocol - Application Part.. 8-4

8.6.1. Application Hardware Signal (Optional) .. 8-4

8.6.2. Application Test Report (Optional).. 8-4

8.6.3. Application Status Message (Optional) .. 8-4

8.7. Smart Battery System Device Messages and Commands.. 8-4

8.7.1. Get Selected Parameter.. 8-5

8.7.2. Selected Parameter Reply .. 8-5

8.7.3. Set Selected Parameter .. 8-6

8.7.4. Get Battery/Charger Mode... 8-6

8.7.5. Battery/Charger Mode Reply ... 8-6

8.7.6. Set Battery/Charger Mode ... 8-7

8.7.7. Battery/Charger Alarm Message .. 8-8

8.8. Smart Battery System Device Data Stream Messages (Optional)... 8-8

8.8.1. Requested Charging Current Message.. 8-8

8.8.2. Requested Charging Voltage Message ... 8-9

Appendix A Op Code Summary ... 8-10

Battery Minor op-codes .. 8-10

Charger Minor op-codes ... 8-10

Major op-codes... 8-10

Appendix B Design Considerations .. 8-12

Battery Insertion and Removal Detection...................................... 8-12

Battery Slot Location Detection.. 8-12

Hardware Isolation.. 8-12

Smart Battery Systems Device Protocol Specificaiton V3.0 8-1

8. Introduction

8.1. Design Objectives
The Smart Battery System (SBS) device protocol described in this section defines standard
messages for controlling battery system components such as batteries, chargers and switches used
to supply host system power. This protocol allows a device driver to obtain, through the
ACCESS.bus manager, detailed information from the batteries in the system, including their state
of charge, output voltage, etc. and also control the operation of the charger or chargers used to
recharge the batteries. In addition, the device driver can control the configuration of systems with
multiple batteries. The driver typically controls and reports which battery is powering the system,
and which battery or batteries are being charged.

Smart Battery System devices use the On-board ACCESS.bus System Management device
protocols.. This document defines the logical view of Smart Battery System devices at the
ACCESS.bus device driver layer level.

8.2. Smart Battery System Overview
The Smart Battery System drivers allow power management drivers and software utilities to
control On board ACCESS.bus Smart Battery System components.In some systems, additional
switching hardware (Smart Battery Selector) may exist to control which battery in a multiple
battery system is connected to the bus at any one time. This selector has the additional function of
switching battery and charger outputs to the system power supply rails, and selectively connecting
the battery data streams to the physical bus. The ACCESS.bus virtual device drivers isolate power
management drivers from this complexity by controlling the selector as necessary to direct
messages to the individual batteries. Developers of ACCESS.bus diagnostic tools and/or bus
monitors should recognize that ACCESS.bus virtual batteries may not be physically connected to
the bus at all times, even though they are logically connected.

This document contains additional background information on related areas of the ACCESS.bus
specification for the benefit of developers implementing this specification.

8.3. Conventions
Numerous terms related to On-Board System Management devices, Smart Batteries, Smart
Chargers and Smart Battery Selectors are used in this document. Please refer to the Intel-Duracell
Smart Battery Data, Smart Battery Charger, and Smart Battery Selector Specifications for their
definitions.

8.4. Control of Specification
The Smart Battery System Device Protocol is the result of collaboration between Intel, Duracell
and the ACCESS.bus Industry Group. It provides a common interface to report the Smart Battery
System device information but the data content is defined by the Smart Battery Data, Smart
Charger or the Smart Battery Selector specifications.

Questions and input regarding the Smart Battery Data, Smart Charger or the Smart Battery
Selector specifications should be directed to:

Intel Architecture Labs Technical Support
Phone 1-800-628-8686
Fax 1-916-356-6100
Intl. Phone 1-916-356-3551
Email IAL_Support@ccm.hf.intel.com

Smart Battery Systems Device Protocol Specificaiton V3.08-2

All other questions and input should be directed to ABIG.

8.5. Base Protocol - Interface Part
ACCESS.bus commands are divided into base and application specific portions. Base level
commands are used to manage common ACCESS.bus features such as address assignment,
capability strings, and power management. Application specific commands are unique to the
particular device. None of the interface part commands are issued from ACCESS.bus device
drivers in normal operation.

The Base protocol is additionally divided into Interface and Application portions. The interface
portion implements the ACCESS.bus commands required to configure the device. The Application
portion is responsible for transferring device information to the Host. For example setting the
battery's bus address is an interface function, while returning remaining charge information is in
the Application section. Most interface part commands are intercepted within the virtual
ACCESS.bus device simulation code, and therefore do not result in bus transactions.

Due to the use of On-board ACCESS.bus System Management device protocols by the
ACCESS.bus miniport and virtual ACCESS.bus device drivers to communicate with the
underlying Smart Battery System hardware components, the base level protocol commands are
implemented in the ACCESS.bus Smart Battery System virtual battery and charger device drivers.

8.5.1. Reset
The Host issues reset commands to re-initialize bus devices. For the virtual ACCESS.bus
devices resets issued by device drivers do not necessarily result in a hardware reset of the
device.

8.5.2. Attention
Attention messages will not appear on the bus for virtual ACCESS.bus devices. The
virtual ACCESS.bus devices will however appear in the ACCESS.bus manager device
table, and connection events will be propagated to the attached device drivers.

8.5.3. Identification
The identification phase is used by the host to separately select each device prior to
assigning it a unique address. During the identification phase devices return information
that uniquely identifies them to the host so that the host can assign addresses to the
devices on the bus. For virtual ACCESS.bus battery devices the identification process is
simulated by the virtual battery device drivers.

8.5.4. Assign Address
The Host issues an Assign address command to move the physical ACCESS.bus devices
from their ACCESS.bus default addresses (6Eh) to a new assigned value. For virtual
devices, no actual address assignment takes place, except at the ACCESS.bus manager
driver level.

8.5.5. Capabilities Information
The keywords defined in this section have standard meanings only within the SBS device
protocol. The entries in the battery and charger capabilities strings are derived from the
static Smart Battery, Smart Charger and Smart Battery Selectorr information fields. The
model() entry is the On-board ACCESS.bus SM DeviceName truncated to 8 characters.

Keyword Meaning
sbsystem Used as a prot() token to identify a device belonging to this protocol class.
sbat Used as a type() token to identify a smart battery.

Smart Battery Systems Device Protocol Specificaiton V3.0 8-3

scharge Used as a type() token to identify a smart battery system charger.
BA Used as a prev() token to identify the current ACCESS.bus base protocol and

device specific protocol revision. The current prev value is BA. "B "is the
current ACCESS.bus base protocol revision (V2.2). "A" is the current
revision of the Smart Battery System Device protocol V0.01.

bslot Battery slot number - identifies the physical location of the battery in the
system. A default value of zero is used for systems with only one battery slot.

mfgname ManufacturerName token
mfgdata Used to identify ManufacturerData which is private vendor specific data. This

is stored as binary data, as read from the Smart Battery.
dname DeviceName token
dchem DeviceChemistry token

An example of a Smart Battery capability string is:
(
prot(sbs)
type(sbat)
model(MBC101)
prev(BA)
bslot(0)
sbmode(ma)
dname(MBC101)
dchem(NiCd)
dcap(1000)
dvolt(6.0)
sbspec(1.0 10 10)
mfgname(New Battery Corp.)
mfgdata(bin(4(....)))
)

SBS Data Item SBS Data Type ACCESS.bus
Capabilities Item

ACCESS.bus
Data Type

ManufactureDate Packed Unsigned Int mfgdate ITOA string
SerialNumber Unsigned Int sernum ITOA string
ManufacturerName String vendor name 1st 8 chars
DeviceName String module name 1st 8 chars
DeviceChemistry String dchem string
DesignCapacity Unsigned Int dcap ITOA string
DesignVoltage Unsigned Int dvolt ITOA string
SpecificationInfo Packed Unsigned Int sbspec (see note 1) VerString, int, int
BatteryMode Unsigned Int Sbmode ma, mw

Note :
sbspec(version, VScale, IPScale)
sbspec contains three values, the first is the version number of the Smart Battery
Specification supported by the device, presented in V.V format where each V can range
from 0 to 15. The second value is the voltage scale multiplier, 1, 10, 100 or 1000. The
third value is the current/power scale multiplier, 1, 10, 100, 1000.

8.5.6. Device Bandwidth Management
Base level ACCESS.bus commands implement bandwidth management to provide equal
access to all devices. Smart Batteries and other System Management devices consume

Smart Battery Systems Device Protocol Specificaiton V3.08-4

very little bandwidth, and it is assumed that Smart Battery Systems will not implement
this feature.

8.6. Base Protocol - Application Part
The Application portion of the base protocol allows the device to signal changes in status or error
conditions.

8.6.1. Application Hardware Signal (Optional)
The Application Hardware Signal message is sent by ACCESS.bus devices to generate
high priority system control signals. Physical ACCESS.bus batteries or chargers may send
this message to signal emergency fault situations. Virtual ACCESS.bus batteries and
chargers will not generate this message in normal operation.

8.6.2. Application Test Report (Optional)
In response to an Application Test command the Smart Battery System devices may
respond with a self test report.

Device to Host:

10 XX PL A1 ST YY ... YY CS

Where:

10 On-board ACCESS.board SM device host address
XX Device address
PL Message Length (P=1, Length =2 to 32)
PL = 10LLLLLL where LLLLLL = from 000010 to 100000
A1 Self test reply op code
ST Self test result

00h Successful Self Test
1xh-7xh Reserved
80h-FFh Other error

YY 0-30 bytes of additional test information
CS Checksum

Self test error code uses the high nibble to encode the major problem area. If the device
provides additional diagnostic information it is returned in the low nibble. The device
may also return up to 30 bytes of additional test result information.

8.6.3. Application Status Message (Optional)
Application status message allows devices to report changes in their status or various
error conditions. This message allows both predefined and user defined messages to be
transferred to the appropriate driver. Smart Battery System devices may use this message
to report general status such as device not ready, or that device capabilities have changed.

8.7. Smart Battery System Device Messages and Commands
All commands and messages in this section are required. Most functions require three op-codes, a
host to device request for the current value of the parameter of interest, the battery, charger or
selector's reply message, and a command to change the parameter.

To simplify implementation, these functions utilize a major op code to encode the desired
operation (Get, Reply, Set) and a minor one to specify the parameter being manipulated.

Smart Battery Systems Device Protocol Specificaiton V3.0 8-5

8.7.1. Get Selected Parameter
The get selected parameter command instructs the Smart Battery System component to
send the selected parameter back to the host in a reply message. The minor op-code
informs the component which parameter to return.

Host to Device:

XX 10 82 51 mm CS

Where:

XX Device address
10 On-board ACCESS.board SM device host address
82 Message Length (P = 1, Length = 2 bytes)
51 Get Selected parameter - Major op code
mm Minor op code
CS Checksum

Example:

XX 10 82 51 08 CS

This string requests the current temperature of a smart battery.

8.7.2. Selected Parameter Reply
The selected parameter reply message shall be issued by the Smart Battery System
component in reply to a get selected parameter command. The reply consists of a byte
string that returns the minor request op-code and the current value of the parameter.

Device to Host:

10 XX 86 52 RC mm VH VL CS

Where:

10 On-board ACCESS.board SM device host address
XX Device address
86 Message Length (P = 1, Length = 4 bytes)
52 Selected parameter reply op code
RC Result code

00h No error
01h Busy - device unable to process the function at this time
02h Not Ready - device is not ready - try again later
03h Unsupported minor op-code
07h Unidentified error

mm Minor op code from parameter request message
VH Present value high byte
VL Present value low byte
CS Checksum

Example:

10 XX 86 52 00 08 0B 72 CS

Smart Battery Systems Device Protocol Specificaiton V3.08-6

This string returns the current battery temperature, 0B72 H (about 20° C) .

8.7.3. Set Selected Parameter
The Set selected parameter command instructs the Smart Battery System component to
change the parameter specified by the minor op-code.

Host to Device:

XX 10 84 53 mm SH SL CS

Where:

XX Device address
10 On-board ACCESS.board SM device host address
84 Message Length (P = 1, Length = 4 bytes)
53 Set Selected parameter - major op code
mm Minor op code
SH high byte
SL low byte
CS Checksum

Example:

XX 10 84 53 14 04 00 CS.

This string sets the charging current from a charger to a new level of 1024 ma.

8.7.4. Get Battery/Charger Mode
This command requests the current battery or charger operating mode.

Host to device:

XX 10 81 54 CS

Where:

XX Device address
10 On-board ACCESS.board SM device host address
81 Message length (P=1, Length =1 byte)
54 Get current battery or charger operating mode
CS Checksum

8.7.5. Battery/Charger Mode Reply
This message returns the current battery or charger operating mode to the host.

Device to Host:

10 XX 83 55 AR SR CS

Where:

10 On-board ACCESS.board SM device host address

Smart Battery Systems Device Protocol Specificaiton V3.0 8-7

XX Device address
83 Message Length (P = 1, Length = 3 bytes)
55 Battery/Charger mode reply op-code
AR Command argument

08h Autocharge Mode
04h Charger connected
02h Supplying power
01h Disconnected, battery or charger idle
(All other command argument values are reserved)

SR Target Number (default = 0)
CS Checksum

8.7.6. Set Battery/Charger Mode
This command instructs the component to change its operating mode. Four modes are
supported, in the first the battery or charger is disconnected and not supplying (or
receiving) power. In the second mode the battery is supplying power. This mode's
meaning to a charger is implementation dependent. The third mode, charger connect, is
used to connect the power output of a charger to a battery in order to re-charge the
battery. Charging control in this mode is handled by the host. The fourth mode,
autocharge mode, is used to connect the power output of a charger to a battery, and in
addition to connect the battery and the charger via a control channel such that the
charging control can occur without host intervention.

Target number is used to identify which device the charger or battery should be
connected to. For systems with a single battery and charger this value is always zero. For
more complex systems, the target number serves as an identifying handle for the desired
connection target. For a charger, whose target is a battery, the target is the battery's slot
number. For a battery supplying power the target is a holder's power bus id number. For a
battery being charged, the target is a charger's id number. For systems with one power
bus and charger, the target values are always zero.

Systems which have multiple batteries and/or chargers and power planes include another
psuedo device known as a holder. The holder's capabilities string contains information
about the number of battery slots and their physical locations, as well as the number of
chargers and power buses and their id numbers. Physical switching hardware associated
with the multiple battery slots and chargers is virtualized, and hidden from the power
management drivers, but information about certain aspects of the switching hardware's
configuration are available through the holder virtual device.

Smart Battery Systems Device Protocol Specificaiton V3.08-8

Host to Device:

XX 10 83 56 AR SR CS

Where:

XX Device address
10 On-board ACCESS.board SM device host address
83 Message Length (P = 1, Length = 3 bytes)
56 Set Battery/Charger mode op-code
AR Command argument

08h Autocharge Mode
04h Charger connect
02h Supply power
01h Disconnect
(All other command argument bit values are reserved)

SR Target Number (default =0)
CS Checksum

8.7.7. Battery/Charger Alarm Message
The battery or charger reports changes is status and alarm conditions by sending this
message to the host.

Device to Host:

10 XX 01 51 00 CS

Where:

10 On-board ACCESS.board SM device host address
XX Device address
83 Message Length (P = 1, Length = 3)
57 Status/Alert op code
HY Status/Alert high byte
LY Status/Alert low byte
CS Checksum

Where the format of the Status Alert word is as defined in the Smart Battery
Specification section 5.4.1 AlarmWarning

8.8. Smart Battery System Device Data Stream Messages (Optional)
The Smart Battery System Device protocol defines two data stream messages, one for requested
charging current and the other for requested charging voltage. These messages are enabled and
disabled with the Enable Application Report command. These messages are optional, and are
provided for implementors of physical ACCESS.bus batteries. They will not be provided by
virtual ACCESS.bus batteries.

8.8.1. Requested Charging Current Message
Device to Host:

10 XX 0L 51 BN BN BN CS

Smart Battery Systems Device Protocol Specificaiton V3.0 8-9

Where:

10 On-board ACCESS.board SM device host address
XX Device address
03 Message Length (P = 0, Length = 3)
5E Requested Charging Current op code
CH ChargingCurrent High Byte
CL ChargingCurrent Low Byte
CS Checksum

8.8.2. Requested Charging Voltage Message
Device to Host:

10 XX 0L 51 BN BN BN CS

Where:

10 On-board ACCESS.board SM device host address
XX Device address
03 Message Length (P = 0, Length = 3)
5F Requested Charging Voltage op code
VH ChargingVoltage High Byte
VL ChargingVoltage Low Byte
CS Checksum

Smart Battery Systems Device Protocol Specificaiton V3.08-10

Appendix A Op Code Summary

Smart Battery System device op-codes are divided into two categories. MAJOR op-codes select
functions - Get, Reply, Set. MINOR op-codes are used to specify which data items are to be read
or written.

Op-codes between 60h - 7Fh are reserved for vendor specific functions.

Battery Minor op-codes
00h ManufacturingAccess
01h RemainingCapacityAlarm
02h RemainingTimeAlarm
03h BatteryMode
04h AtRate
05h AtRateTimeToFull
06h AtRateTimeToEmpty
07h AtRateOK
08h Temperature
09h Voltage
0Ah Current
0Bh AverageCurrent
0Ch MaxError
0Dh RelativeStateOfCharge
0Eh AbsoluteStateOfCharge
0Fh RemainingCapacity
10h FullChargeCapacity
11h RunTimeToEmpty
12h AverageTimeToEmpty
13h AverageTimeToFull
14h ChargingCurrent
15h ChargingVoltage
16h BatteryStatus
17h CycleCount
18h DesignCapacity
19h DesignVoltage
1Ah SpecificationInfo
1Bh ManufactureDate
1Ch SerialNumber

Charger Minor op-codes
12h ChargerMode
13h ChargerStatus
14h ChargingCurrent
15h ChargingVoltage
16h AlarmWarning

Major op-codes
51h Request current value of selected parameter

Smart Battery Systems Device Protocol Specificaiton V3.0 8-11

52h Reply message to Request current value command
53h Set current value of selected parameter
54h Get Battery/Charger operating mode
55h Battery/Charger operating mode reply
56h Set Battery/Charger operating mode
57h Status/Alert from device
5Eh Requested Charging Current - Device Data Stream Message
5Fh Requested Charging Voltage - Device Data Stream Message

Smart Battery Systems Device Protocol Specificaiton V3.08-12

Appendix B Design Considerations

This section is not a formal part of the Smart Battery System Protocol specification. It is for
informational purposes only.

Battery Insertion and Removal Detection
Battery insertion and removal events are detected by hardware directly. These events are
ultimately reported to the power management device drivers by standard ACCESS.bus manager
device connect and disconnect messages.

Battery Slot Location Detection
Physical ACCESS.bus batteries that are intended for use in systems with multiple battery slots
should incorporate some means of detecting their physical location and returning that information
as a part of their capabilities string. One way that this can be accomplished is for the battery to
include a few mating connector pins which are connected to ground differently in each slot when
the battery is inserted. The battery can then read the state of the connector pins and return this as
the slot number.

Hardware Isolation
The I2C communication channel uses two shared pins for clock and data signals. In the event that
a failed device forces one or both of the lines to an invalid level, the bus becomes unusable. Due
to the importance of the internal system management functions it is highly recommended that
system vendors provide a means for isolating the internal On-board ACCESS.bus from external
Off-board ACCESS.bus peripherals.

SECTION 9

ACCESS.bus

Text Device Protocol Specification

September 1995

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994, 1995
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips I2C patent conveys a
license to use these components in an I2C system, provided that the system conforms to I2C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

9. Introduction ... 9-1

9.1. Design Objectives.. 9-1

9.2. Text Device Overview... 9-1

9.3. Text Device Protocol... 9-1

9.3.1. Device Number and Identification ... 9-1

9.3.2. Message Length and Timing.. 9-1

9.3.3. Flow Control.. 9-2

9.3.4. Serial Asynchronous Communication Parameters .. 9-3

9.3.5. Serial Asynchronous Control Signals ... 9-3

9.3.6. Direction Control... 9-4

ACCESS.bus Text Device Protocol Specification V3.0 9-1

9. Introduction

9.1. Design Objectives
The text device protocol described in this specification is intended to provide a simple way to
transmit character or binary data to and from stream oriented devices such as a bar code reader, or
character display. The sequential character stream model also serves as a common denominator for
connecting RS-232 interfaced devices.

9.2. Text Device Overview
A generic text device transmits a stream of 8-bit bytes from a character set. Simple control
messages are defined to support flow control and to select communication parameters that might be
used to interface with a modem. The capabilities string contains information that identifies the
specific character set and communication parameters used.

9.3. Text Device Protocol

Text characters to be transmitted are sent using the Device Data Stream message (see
ACCESS.bus, Description and Protocol Specification).

Format:

ddddddd0 (destination address)
sssssss0 (source address)
0LLLLLLL (P=0, LLLLLLL=body-length)
|
body (0-127 bytes)
|
cccccccc (checksum)

Characters are assumed to be from the coded character set specified in the Capabilities Information
unless otherwise agreed upon between the application and device. This agreement might be
established using ISO standardized control functions, but this is defined at a higher level than the
text device protocol.

9.3.1. Device Number and Identification
A text device may be interactive like a bar code reader that transmits a stream of
characters in response to user action, or non-interactive like an RS-232 converter attached
to a printer. Non-interactive devices are required to provide a fixed device number since
they cannot be distinguished by the order in which they are used.

A general purpose ACCESS.bus to RS-232 adapter may have no way of reporting what is
attached to its RS-232 port. In this case, the host system or application must rely on the
RS-232 device for device identification. Information about what is attached to an RS-232
adapter can be maintained on the host and associated by the device number if desired.

9.3.2. Message Length and Timing
Interactive text devices must not occupy the bus as bus master for more than eight
milliseconds at a time, and must wait at least fifty microseconds (50ms) between message
transmissions. Eight milliseconds (8ms) limits the maximum packet size to eighty
characters or less at l00Kbps.

ACCESS.bus Text Device Protocol Specification V3.09-2

Non-interactive devices must not occupy the bus as bus master for more than five
milliseconds at a time, and must wait at least twelve milliseconds (12ms) between
message transmissions. Five milliseconds (5ms) limits the maximum packet size to fifty
characters or less at l00Kbps.

The Text Device Protocol defines a Record Separator command to group message packets
into identifiable records.

Application Record Separator ()

 Op-code: 30
 Data: none

The Record Separator is sent by a device or the host computer to indicate the next data
byte transmitted will be the first byte of a new record. Can also be used as a "end of
record" command.

9.3.3. Flow Control
When a computer or device is capable of sending data faster than its bus partner can
receive and process it, flow control may be needed to avoid losing data. In its simplest
form, flow control allows the receiver to tell the sender to wait until it is ready before
sending more data. While the I2C hardware provides low level flow control by stretching
clock signals, this will not be appropriate for many applications because it blocks all
traffic on the bus.

An example application requiring higher level flow control is a printer that cannot print
data as fast as the host can send it. Depending on the application, the printer may need to
instruct the computer to not transmit any more messages until it has room in its buffer to
hold them.

Two application commands are defined for this purpose:

Application Hold ()

Op-code: 13h
Data: none.

Tell the sender to hold transmission until requested to resume.

Application Resume (count)

Op-code: llh Data: 16-bit unsigned integer count of number of bytes device is
ready to accept.

Tell sender it may resume transmitting data up to `count' characters. If `count' is zero or
omitted, the sender may continue transmitting until requested to hold.

By using a non-zero count in the AppResume command, a receiving device need not
transmit an urgent message to the sender when its buffer is full.

ACCESS.bus Text Device Protocol Specification V3.0 9-3

Notes:

1. AppHold and AppResume only affect device data stream messages. All
ControVStatus commands must continue to be processed regardless of the held state.

2. When a device is reset it has no way of knowing the previous flow control state.

After being reset and the configuration process is complete, a device using flow
control shall transmit a single AppResume command and clear its transmit held state
(if any).

9.3.4. Serial Asynchronous Communication Parameters
The Text Device Protocol defines the following commands for interfacing with common
UARTs.

Application Set Format (controlmask)

OpCode: 01
Data: 16-bit controlmask

The control mask specifies UART parameters as follows. Choices listed in parenthesis are
selected in order (0, 1, 2, . . .).

b0-b3 ransmit speed
(default, 19200, 9600, 4800, 2400, 1200, 600, 300)

b4-b7 receive speed
(rx=tx, 19200, 9600, 4800, 2400, 1200, 600, 300)

b8 word size (8-bits, 7-bits)
b9 stop bits (one stop bit, two stop bits)
bl0-bll parity (none, even, odd)
bl2 local echo (FDX, HDX)
bl3-bl4 flow control (none, XON/XOFF, DSR/DTR, RTS/CTS)

Application Request Format ()

Op-code: 02
Data: none

Application Request Format is sent from the host to a device and requests the device
respond with an Application Report Format message.

Application Report Format (controlmask)

Op-code: 03
Data: 16-bit control mask, same as Application Set Format

9.3.5. Serial Asynchronous Control Signals
The Text Device Protocol defines the following commands for interfacing with common
RS232 control signals.

ACCESS.bus Text Device Protocol Specification V3.09-4

Application Set Control (controlmask)

Op-code: 04
Data: 16-bit control mask

The control mask identifies the control signals to be set as follows (DCE side):

b0 DSR
bl DTR
b2 RTS
b3 CTS
b4 RLSD (or CD)
b5 FE (framing error)
b6 OE (overrun error)
b7 PE (parity error)
b8 Break detected
b9 Send break
bl0-11 reserved
bl2-15 available for application use

Application Reset Control (controlmask)

Op-code: 05
Data: 16-bit control mask.

The control number identifies the control signals to be reset using the same definitions as
Application Set Control.

Application Request Control ()

Op-code: 06
Data: none

Application Request Control is sent from the host to a device and requests the device
respond with an Application Report Control message.

Application Report Control (controlmask)

Op-code: 07
Data: 16-bit control mask

Sent by a device to the host when an input control signal changes or in response to a
request. The controlmask reports the status of UART control signals using the same
definitions as Application Set Control.

9.3.6. Direction Control
The Text Device Protocol defines the following command for controlling the direction of
bi-modal interfaces.

Application Set Direction (controlmask)

Op-code: 08
Data: 16-bit control mask

ACCESS.bus Text Device Protocol Specification V3.0 9-5

Sent by the host computer to a device to specify the direction of interface operation.

bO-bl Direction (transmit, receive, full duplex)
b2-b3 Rank (Default, Master, Slave, Off-line)

Examples of Master: RS-232 DTE
Host centronics port
Dialing FAX

Examples of Slave: RS-232 DCE
Printer centronics port
Answering FAX

b4-b7 Reserved
b8-b15 Available for application use

9.4. Capabilities Information

The keywords defined in this section have standard meanings within the ACCESS.bus Generic
Text Device Protocol.

Keyword Meaning

Charset() Tags the default character set used to encode text data. The
following names are defined:

ASCII, I50:8859/1
Direction() Tags whether device can be used for data input, data output, or

half-duplex, or full-duplex.
Direction(input output HDX FDX)

FlowControl() Tags whether low level flow control is used for input and/or
output (AppHold and AppResume).

FlowControl(input output)
UARTformat() Lists common UART format selections that are supported and

can be modified or examined by Application Format
commands.

 UARTformat(speed, size, parity, stop, echo, flow(0 1 2 3))
The sublist of numbers, if present, indicates which selections
are supported.

UARTcontrol() Lists common modem control signals that are supported and can be
modified or examined by Application Control commands.

UARTcontrol(DSR DTR RTS CTS RLSD FE OE PE REAK)

	ACCESS.bus
	TABLE OF CONTENTS
	Hardware Specification
	Introduction
	General Description
	General Characteristics
	Data Transfer
	Arbitration and Clock Generation
	Format of 7-Bit Addresses
	7-Bit Addressing
	Off-board ACCESS.bus
	On-board ACCESS.bus
	Electrical Specifications and Timing For I/O Stages and Bus Lines

	Base Protocol Specification
	ACCESS.bus Base Protocol
	Fixed Address (FA) Base Protocol Subset
	Appendix A. ACCESS.bus Interface Op-codes Summary
	Appendix B. Reserved ACCESS.bus Device Addresses
	Appendix C. Definitions

	Device Driver Interface Specification
	Introduction
	The ACCESS.bus device driver
	The Bus manager - Device driver interface
	The device driver to bus manager interface mechanism (IBM PC specific)

	ACCESS.bus Manager / Mini Port Driver Interface
	ACCESS.bus Software Architecture
	ACCESS.bus Manager
	Software Device Drivers
	Application Layer
	Manager / MPD Communications - DOS
	Manager / MPD Communications - Windows 3.1
	Manager to ACCESS.bus Controller Messages (through the MPD)
	ACCESS.bus Controller To Manager Messages (through the MPD)

	Keyboard Device Protocol Specification
	Introduction
	Design Objectives
	Generic Keyboard Overview
	Key Event Reporting
	Auto Repeat
	Key click and Bell
	Capabilities Information
	Timing and Exceptions (Guideline)
	Host Commands to Keyboard
	Keyboard To Host Data
	Keyboard Mapping Tables
	APPENDIX 5.A
	APPENDIX 5.B
	APPENDIX 5.C
	APPENDIX 5.D

	Locator Device Protocol Specification
	Design Objectives
	Overview of Generic Locator
	Locator Event Reports
	Capabilities Information
	Locator Conventions
	Timing and Exceptions
	Locator Messages and Commands

	Monitor Device Protocol Specification
	Design Objectives
	Monitor Device Overview
	Base Protocol -- Interface Part
	Base Protocol -- Application Part
	Monitor Device Messages and Commands
	Monitor Device Data Stream Messages
	Appendix 7A
	Appendix 7B

	Smart Battery System Device Protocol Specification
	Design Objectives
	Smart Battery System Overview
	Conventions
	Control of Specification
	Base Protocol - Interface Part
	Base Protocol - Application Part
	Smart Battery System Device Messages and Commands
	Smart Battery System Device Data Stream Messages (Optional)
	Appendix A
	Appendix B

	Text Device Protocol Specification
	Design Objectives
	Text Device Overview
	Text Device Protocol
	Capabilities Information

